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In model networks of E-cells and I-cells (excitatory and inhibitory neu-
rons, respectively), synchronous rhythmic spiking often comes about
from the interplay between the two cell groups: the E-cells synchronize
the I-cells and vice versa. Under ideal conditions—homogeneity in rel-
evant network parameters and all-to-all connectivity, for instance—this
mechanism can yield perfect synchronization. We find that approximate,
imperfect synchronization is possible even with very sparse, random con-
nectivity. The crucial quantity is the expected number of inputs per cell.
As long as it is large enough (more precisely, as long as the variance of the
total number of synaptic inputs per cell is small enough), tight synchro-
nization is possible. The desynchronizing effect of random connectivity
can be reduced by strengthening the E→I synapses. More surprising,
it cannot be reduced by strengthening the I→E synapses. However, the
decay time constant of inhibition plays an important role. Faster decay
yields tighter synchrony. In particular, in models in which the inhibitory
synapses are assumed to be instantaneous, the effects of sparse, random
connectivity cannot be seen.

1 Introduction

In networks of E-cells (excitatory neurons) and I-cells (inhibitory neurons),
synchronous, rhythmic spiking often results from the interplay between the
two cell groups, with the E-cells synchronizing the I-cells and vice versa.
This mechanism, called PING (pyramidal interneuronal network gamma;
Whittington, Traub, Kopell, Ermentrout, & Buhl, 2000) or γ -II (Tiesinga,
Fellous, José, & Sejnowski, 2001), has been observed in modeling studies,
and there are reasons to believe that some experimentally observed gamma
rhythms are in fact based on this mechanism (Traub, Jefferys, & Whittington,
1999; Whittington et al., 2000; Tiesinga et al., 2001).
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Figure 1: PING in E-I networks with (A) all-to-all connectivity and (B) sparse
connectivity.

The conditions under which PING occurs are not completely understood,
though we discuss them heuristically in section 6. We focus here on the ef-
fects of random connectivity on PING. This effect is illustrated by Figure 1.
Details about this figure will be given later. For now, it suffices to say that Fig-
ure 1A shows the emergence of PING in a model E/I network with all-to-all
connectivity and without any kind of heterogeneity in network parameters.
The figure indicates spike times. Both cell groups (E and I) synchronize
tightly. If the connectivity is made sparse and random, Figure 1A turns into
Figure 1B. The two cell groups now fire spike volleys of brief but positive
duration. (The spike volleys of the I-cells are so brief that they appear to
have zero duration in the plot.) The main goal of this article is to analyze
the durations and shapes of these volleys and their dependence on network
parameters.

Synchronization in the presence of random connectivity has been studied
previously for excitatory networks (Barkai, Kanter, & Sompolinsky, 1990),
inhibitory networks (Brunel & Hakim, 1999; Wang & Buzsáki, 1996), and
E/I networks (Brunel, 2000; Bush & Sejnowski, 1996; Golomb & Hansel,
2000; Hansel & Mato, 2001; van Vreeswijk & Sompolinsky, 1996, 1998; Wang,
Golomb, & Rinzel, 1995). This literature is aimed at understanding either
the stability of the asynchronous state or transitions from asynchrony to
rhythms and vice versa. We do not consider these issues here, but focus
instead on a detailed understanding of the near-synchronous state.

In section 2, we review the theta model (Ermentrout & Kopell, 1986;
Gutkin & Ermentrout, 1998; Hoppensteadt & Izhikevich, 1997), an idealiza-
tion of a large class of conductance-based neuronal models. Our arguments
and simulations in this article are based on this model. We also introduce
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our model of synapses in section 2 and describe the connectivity of our
model networks. In section 3, we present numerical experiments demon-
strating that the desynchronizing effect of sparseness and randomness in
the connectivity primarily originates from the variance in the number of
inputs per cell, not from the randomness per se. The synchronization of a
population of cells by an inhibitory input pulse is analyzed in section 4,
first assuming that all cells receive the same input pulse, and then, moti-
vated by the result of section 3, assuming that different cells receive input
pulses of different strengths. Similarly, the synchronization of a population
of cells by an excitatory input pulse is analyzed in section 5, first assuming
that all cells receive the same input pulse, then assuming that different cells
receive input pulses of different strengths. The results of sections 4 and 5
are combined in section 6 to analyze PING in E/I networks. In section 7, we
summarize our results and put them into the context of other recent work
on the same subject.

2 Review of Theta Neurons

2.1 Equation of a Single Theta Neuron. In the Hodgkin-Huxley model,
a periodically spiking space-clamped neuron is represented by a point mov-
ing on a limit cycle in a four-dimensional phase space. Analogously, in
the theta model (Ermentrout & Kopell, 1986; Gutkin & Ermentrout, 1998;
Hoppensteadt & Izhikevich, 1997), a neuron is represented by a point P =
(cos θ, sin θ) moving on the unit circle S1. In the absence of synaptic cou-
pling, the differential equation governing the motion is

dθ

dt
= 1

τ
(1 − cos θ) + I(1 + cos θ). (2.1)

Here, I should be thought of as an input “current,” measured in radians
per unit time. The time constant τ > 0 is needed to make equation 2.1
dimensionally correct; it is analogous to a membrane time constant.

When I < 0, equation 2.1 has the two fixed points:

θ±
0 = ±2 arccos

1√
1 − τ I

.

θ−
0 is stable, and θ+

0 is unstable. For I < 0, the vector field on the circle is
shown in the left panel of Figure 2A. If θ is perturbed slightly from θ−

0 , it
returns to θ−

0 . However, if θ is raised beyond θ+
0 , a large excursion occurs,

with the point P moving around the entire circle while θ increases to θ−
0 +2π .

The stable fixed point θ−
0 is the analog of the stable equilibrium of a neuron.

The unstable fixed point θ+
0 is the analog of a spiking threshold.

As I approaches 0, the fixed points approach each other. A saddle-node
bifurcation occurs when I = 0. The two fixed points come together at θ = 0
(see the center panel of Figure 2A). When I > 0, dθ/dt > 0 for all t, so there
is no fixed point (see the right panel of Figure 2A).
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Figure 2: Theta model. (A) Vector field on the circle for I < 0, I = 0, and I > 0.
(B) Sin θ as a function of time.

The transition from I < 0 to I > 0 is the analog of the transition from
excitability to spiking in a neuron. Neuronal models are called of type I if this
transition involves a saddle-node bifurcation on a limit cycle and of type II
if it involves a subcritical Hopf bifurcation (Ermentrout, 1996; Gutkin &
Ermentrout, 1998; Rinzel & Ermentrout, 1998). This classification goes back
to Hodgkin (1948). Thus, the theta model is a type I neuronal model. It has
been shown to be canonical, in the sense that other type I models can be
reduced to it by coordinate transformations (Ermentrout & Kopell, 1986;
Hoppensteadt & Izhikevich, 1997).

If 0 < I � 1/τ , the motion is much slower near θ = 0, that is, near the
“ghost” of the fixed point annihilated in the saddle-node bifurcation, than
elswhere. This is illustrated in Figure 2B, which shows sin θ as a function of
t for τ = 1, I = 0.02. As the point P = (cos θ, sin θ) moves slowly past (1, 0),
sin θ changes slowly. As P moves rapidly around the circle, sin θ rapidly
rises to 1, then falls to −1, then returns to values slightly below 0. To some
extent the graph of sin θ resembles the voltage trace of a spiking neuron.1

1 Some authors think of − cos θ , not sin θ , as the “voltage-like” quantity in the theta
model. Which of the two we call voltage-like is of no consequence for this article, and
neither is voltage-like in any precise sense. However, we prefer to think of sin θ as the
voltage-like quantity for the following aesthetic reason. Consider a theta neuron driven
slightly above threshold. Near the ghost of the equilibrium point (θ = 0), sin θ is slowly
increasing, while − cos θ has a local minimum. On the other hand, for a Hodgkin-Huxley-
type neuron of type I driven slightly above threshold, the membrane potential V is slowly
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When θ crosses (2l − 1)π , l integer, with dθ/dt > 0, we say that the neuron
spikes.

If I > 0 and −π ≤ θ1 ≤ θ2 ≤ π , the time it takes for θ to rise from θ1 to θ2
equals

∫ θ2

θ1

dθ

(1 − cos θ)/τ + I(1 + cos θ)
=
√

τ

I

[
arctan

tan(θ/2)√
τ I

]θ2

θ1

. (2.2)

Setting θ1 = −π and θ2 = π in this formula, we find that the period equals

P = π

√
τ

I
. (2.3)

We denote the time it takes for θ to rise from π/2 to 3π/2 by W and call it the
spike width. Applying formula 2.2 with (θ1, θ2) = (π/2, π) and (θ1, θ2) =
(−π, −π/2) and adding the results, we find

W =
[
π − 2 arctan

1√
τ I

]√
τ

I
. (2.4)

For physiological realism, we wish to ensure W/P � 1. By equations 2.3
and 2.4,

W
P

= 1 − 2
π

arctan
1√
τ I

.

Therefore, W/P � 1 means the same as τ I � 1. Since arctan(1/ε) = π/2 −
ε + O(ε2) as ε → 0, equation 2.4 implies W ≈ 2τ when τ I � 1. Thus, in
the parameter regime of interest to us, τ is approximately half the spike
width. Motivated by this discussion and by the fact that spike widths in
real neurons are on the order of milliseconds, we set

τ = 1

for the remainder of this article, think of time as measured in milliseconds,
and always consider input currents I � 1.

2.2 Synapses Between Theta Neurons. We model synapses by adding
time-dependent input currents to equation 2.1. When the presynaptic neu-
ron spikes, the postsynaptic neuron receives an input current (positive or
negative, depending on whether the synapse is excitatory or inhibitory),
which jumps to its maximum value instantaneously and then decays ex-
ponentially. This is the model of section 2.1.5 of Izhikevich (2000) (see also
Ermentrout, 1996, for a discussion of synapses between theta neurons).

increasing near the ghost of the equilibrium point. In this sense, V is more similar to sin θ

than to − cos θ .
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Thus, a network of N coupled theta neurons is described by a system of
differential equations of the form

dθj

dt
= 1 − cos θj +

(
Ij +

N∑
i=1

αigijsij

)
(1 + cos θj), 1 ≤ j ≤ N.

Ij denotes the external input to the jth neuron, which can be positive or
negative. The constant αi equals +1 or −1, depending on whether neu-
ron i is excitatory (E) or inhibitory (I). The constant gij ≥ 0 measures the
strength of the synapse from neuron i to neuron j, and sij = sij(t) is the
synaptic gating variable associated with this synapse. The value of sij al-
ways lies between 0 and 1. It jumps to 1 when neuron i spikes. Between
spikes of neuron i, it decays exponentially, following the differential equa-
tion

dsij

dt
= − sij

τij
.

The decay time constants τij are positive.
The jumps of sij occurring when neuron i spikes cause difficulties in the

numerical simulation of the network and are not physiologically realistic. In
our simulations, we therefore replace the jumps by rapid but smooth rises,
letting sij be governed by a differential equation of the form

dsij

dt
= − sij

τij
+ e−η(1+cos θi)

1 − sij

τR
,

with τR = 0.1 and η = 5. The term e−η(1+cos θi) (1 − sij)/τR is very close to
zero unless θi ≈ (2l − 1)π , l integer, and drives sij toward 1 rapidly when
θi ≈ (2l − 1)π . The parameter τR is reminiscent of a synaptic rise time.
Figure 3 shows sij for τij = 2 and 10, with the input of the presynaptic
neuron chosen so that its period equals 25.

2.3 Sparse, Random E/I Networks. Throughout this article, the decay
time constants τij are assumed to depend on the type of i only (excitatory
or inhibitory), so there are two distinct values of τij, denoted τE and τI. We
also assume that all excitatory neurons receive the same constant external
input drive IE, and all inhibitory neurons receive the same constant external
drive II.

In later sections, we consider networks of coupled theta neurons, includ-
ing NE = 4N/5 excitatory and NI = N/5 inhibitory neurons. These propor-
tions are motivated by the fact that in large portions of the cortex, there are
about four times more excitatory than inhibitory neurons (Braitenberg &
Schüz, 1998).

The strengths gij of the synapses are chosen at random. For a given net-
work, they are chosen once and for all; they do not depend on time. To de-
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Figure 3: Synaptic gating variable s as a function of time, with decay time con-
stants τ = 2 and τ = 10.

scribe the choice of the gij, the following notation is useful. LetE ⊆ {1, . . . , N}
denote the set of all indices of excitatory neurons, and similarly I the set of
all indices of inhibitory neurons. For i ∈ E and j ∈ I , we define

gij = gEI

pEINE
wij, (2.5)

with

wij =
{

1 with probability pEI,
0 otherwise,

(2.6)

where gEI ≥ 0 and pEI ∈ (0, 1] are constants.
For j ∈ I , we define

wEj =
∑
i∈E

wij. (2.7)

Note that wEj is a binomially distributed random variable. We also define

gEj =
∑
i∈E

gij = gEI

pEINE
wEj. (2.8)
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From the formulas for the mean and standard deviation of binomially dis-
tributed random variables, we see that gEj has mean gEI and standard devi-
ation

σEI = gEI

√
1 − pEI

pEINE
. (2.9)

By the central limit theorem, gEj is approximately normally distributed if
pEINE is large. Assuming pEI � 1, as is physiologically realistic (Braitenberg
& Schüz, 1998), equation 2.9 shows that

σEI

gEI
≈ 1√

pEINE
. (2.10)

The left-hand side of equation 2.10 is the coefficient of variation (the standard
deviation divided by the mean) of gEj, j ∈ I . The expression pEINE appearing
on the right-hand side is the expected number of excitatory inputs per I-cell.

Formulas analogous to 2.5 through 2.10 apply to the I → E, E → E, and
I → I synapses. In particular,

σIE = gIE

√
1 − pIE

pIENI
, (2.11)

and therefore

σIE

gIE
≈ 1√

pIENI
(2.12)

for pIE � 1. The left-hand side of equation 2.12 is the coefficient of variation
of gIj, j ∈ E . The expression pIENI appearing on the right-hand side is the
expected number of inhibitory inputs per E-cell.

Several authors have pointed out that pEINE and pIENI are much more
important than pEI, NE, pIE, and NI in isolation (Golomb & Hansel, 2000;
Tiesinga, Fellous, José, & Sejnowski, 2002; Wang et al., 1995).

3 Loss of Tight Synchrony Is Attributable to Variance in the Number of
Inputs per Cell

Before considering networks with sparse, random connectivity, we consider
one with all-to-all connectivity (pEI = pIE = 1.0). Figure 1A shows an exam-
ple of a simulation with

IE = 0.1, II = 0, gEI = gIE = 0.25,

gEE = gII = 0, τE = 2, τI = 10.
(3.1)
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Figure 1A shows spike times, with the horizontal axis indicating time and
the vertical axis cell index. Each of the two cell groups (E and I) synchronizes
very rapidly, with the synchronous population spikes of the I-cells slightly
lagging behind those of the E-cells. The synchronization mechanism seen
in Figure 1A is PING, briefly described in section 1 and discussed in more
detail in section 6.1.

We comment briefly on our parameter choices. A neuron driven with
IE = 0.1 spikes periodically with an interspike interval equal to π/

√
I ≈ 9.93.

Since we think of time as measured in milliseconds, this corresponds to a
frequency of (1000/9.93) H ≈ 100 Hz. Thus, the E-cells are driven so hard
that they would spike above gamma frequency if they were not subject
to any inhibition. The I-cells are driven at threshold; they do not spike
without additional excitatory input, but any excitatory input, regardless
how weak, will make them spike. The values of gEI and gIE can be varied
considerably without any qualitative change in Figure 1A. However, for
small values of gEI (roughly < 0.1), two or more population spikes of the
E-cells occur before the I-cells respond. For large values of gEI (roughly
> 0.7), two or more population spikes of the I-cells occur in response to
a population spike of the E-cells. For small values of gIE (roughly < 0.1),
the E-cells are not synchronized. For large values of gIE, the rhythm is slow
but not qualitatively different from that in Figure 1A. For simplicity, we
assume here that there are no E → E or I → I synapses—gEE = gII = 0. In
our experience, E → E synapses (with a brief synaptic decay time such as
τE = 2) do not affect PING rhythms much. However, I → I synapses are
crucial in some parameter regimes; this will be discussed in section 6.1. Our
choices of τE = 2 and τI = 10 are motivated by the decay time constants of
excitatory synapses involving AMPA receptors (approximately 2 ms) and
inhibitory synapses involving GABAA receptors (approximately 10 ms);
recall that we think of time as measured in milliseconds.

When pEI and pIE are reduced from 1.0 to 0.5, Figure 1A turns into Fig-
ure 1B. The two cell groups now fire spike volleys of positive durations. As
stated in section 1, the main goal of this article is to understand the durations
and shapes of these volleys.

In the network underlying Figure 1B, each E-cell receives input from a
random number of I-cells. The expected value of this number is 50. Similarly,
each I-cell receives input from a random number of E-cells, with expectation
200. We now repeat the simulation of Figure 1B with a network in which
the connectivity is still sparse and random, but the variance in the number
of inputs per cell has been eliminated. That is, each E-cell receives input
from a random set of exactly 50 I-cells, and each I-cell receives input from a
random set of exactly 200 E-cells. The network is like that of Figure 1B in all
other regards. The result is shown in Figure 4A; tight synchrony is restored.

When the number of inputs per cell is fixed, tight synchronization is
possible even for much sparser networks. Figure 4B shows a simulation
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Figure 4: Simulation of E-I networks with sparse, random connectivity but with-
out variance in the number of inputs per cell. (A) Parameters as in Figure 1B, but
with variance in numbers of inputs per cell eliminated. (B) Only four excitatory
inputs per I-cell and one inhibitory input per E-cell. (C) Same as B in a larger
network. (D) Same as B, but with only one excitatory input per I-cell.

in which each E-cell receives input from one I-cell, and each I-cell receives
input from four E-cells. Although synchronization is achieved a little less
rapidly than in Figure 4A, it becomes tight within a few oscillation periods.
A four times larger network, again with one inhibitory input into each E-
cell and four excitatory inputs into each I-cell, shows similar behavior (see
Figure 4C).
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If the number of excitatory inputs per I-cell is reduced again, from four
to one, there appears to be no more synchronization (see Figure 4D). Thus,
there appears to be a minimum number of inputs per cell needed for synch-
ronization—a “percolation threshold.” However, this number is very small
in our simulations. In previous work on different models, similar thresholds
have been found (Golomb & Hansel, 2000; Wang & Buzsáki, 1996; Wang
et al., 1995). In all three of these references, asynchrony was found to become
unstable when the number of inputs per cell exceeded a threshold value
independent of network size.

A cell in a human brain typically receives input from thousands of other
cells (Braitenberg & Schüz, 1998). Our numerical experiments suggest that
with so many synapses, the impact of sparse, random connectivity on syn-
chronization is attributable to the variance in the number of inputs per cell,
not to the percolation threshold. We will assume this to be the case from
now on.

4 Synchronization of a Population of Theta Neurons by a Single Strong
Inhibitory Pulse

4.1 Synchronization by an Inhibitory Pulse of Uniform Strength. We
consider a population of N identical, uncoupled neurons with common
constant external drive above threshold, receiving a common inhibitory
synaptic input pulse at time 0. Following section 2, we model this population
by the equations

dθj

dt
= (1 − cos θj) + (I − gs(t))(1 + cos θj), 1 ≤ j ≤ N, (4.1)

with I > 0, g > 0, and

s(t) =
{

e−t/τI if t > 0
0 if t ≤ 0

with τI > 0. If the inhibitory pulse is strong, it brings the population close
to synchrony. An example is shown in Figure 5A, which displays results of
a simulation with

N = 100, I = 0.05, g = 0.25, τI = 10. (4.2)

The synchronization brought about by the inhibitory pulse at time 0 is im-
mediate and nearly perfect.

To understand the synchronization shown in Figure 5A, consider the
initial value problem,

dθ

dt
= 1 − cos θ + (I − ge−t/τI )(1 + cos θ), t > 0, (4.3)

θ(0) = θ0, (4.4)
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Figure 5: Synchronization by a single inhibitory pulse. (A) Inhibitory pulse of
uniform strength. (B) Inhibitory pulse of nonuniform strength. (C) Phase portrait
for equations 4.5 and 4.6 with I = 0.05, τI = 10, with the stable river indicated
boldly. (D) Distribution of spikes within the first volley following t = 0, in a
simulation identical to that in B, but with 1000 neurons: predicted (solid line)
and actual (bars).

with −π < θ0 < π . We define

J(t) = I − ge−t/τI .

Equations 4.3 and 4.4 can then be rewritten in the form

dθ

dt
= 1 − cos θ + J(1 + cos θ) (4.5)

dJ
dt

= − J − I
τI

(4.6)

θ(0) = θ0 (4.7)

J(0) = I − g. (4.8)
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The phase portrait for the two-dimensional dynamical system 4.5 and 4.6 is
shown in Figure 5C for I = 0.05 and τI = 10. The dashed line in Figure 5C
is the nullcline dθ/dt = 0. The nullcline dJ/dt = 0 is the horizontal line
J = I, the upper edge of the window shown in Figure 5C. The figure should
be extended periodically in θ with period 2π . The flow is upward, in the
direction of increasing J.

The most striking feature of Figure 5C is the existence of strongly at-
tracting and strongly repelling trajectories. Trajectories of this kind exist
in many systems of ordinary differential equations and are called rivers
(Diener, 1985a, 1985b). The figure reveals a stable river, that is, a trajectory
(θs, Js) that is attracting in forward time, indicated as a bold line in Figure 5C,
with (θs, Js) → (−π, −∞) as t → −∞, dθs/dt > 0, and

Js(t) = I − ge−t/τI (4.9)

for all t. We denote by T the time when θs(T) = π , and define

J∗ = Js(T) ∈ (0, I). (4.10)

Equations 4.9 and 4.10 imply

T = τI ln g − τI ln(I − J∗). (4.11)

Note that the phase portrait depends on the parameters I and τI but not on
g. Therefore, the value of J∗ depends on I and τI but not on g.

The synchronization seen in Figure 5A can be understood from Figure 5C
in the following way. For g sufficiently large (that is, J(0) sufficiently neg-
ative), and for θ0 sufficiently far from π , (θ(t), J(t)) is rapidly attracted to
(θs(t), Js(t)). At the time when θ = π , we therefore have J ≈ J∗ or t ≈ T.
Thus, the first spike after time zero occurs approximately at time T. For θ0
sufficiently close to π , θ(t) quickly passes through π and is then rapidly
attracted to (θs(t) + 2π, Js(t)). When θ(t) reaches 3π , J ≈ J∗ and therefore
t ≈ T. Thus, a spike occurs soon after time zero, followed by a spike ap-
proximately at time T. Only for values of θ0 in a narrow transition regime
is (θ(t), J(t)) attracted to neither (θs(t), Js(t)) nor (θs(t) + 2π, Js(t)).

Equation 4.11 gives the time of the first approximately synchronous pop-
ulation spike. Since we have no explicit formula for J∗, equation 4.11 is not
an explicit formula for T. However, since J∗ does not depend on g, equa-
tion 4.11 does give the precise dependence of T on g. This dependence will
be of primary interest to us in the remainder of section 4. For later reference,
we note how equation 4.11 is modified when the synchronizing inhibitory
pulse arrives not at time 0 but at some time T0:

T = T0 + τI ln g − τI ln(I − J∗). (4.12)
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4.2 Approximate Synchronization by an Inhibitory Pulse of Nonuni-
form Strength. Motivated by section 3, we are interested in the effects of
variable synaptic strengths. We therefore let the constant g in equation 4.1
depend on j:

dθj

dt
= (1 − cos θj) + (I − gjs(t))(1 + cos θj), 1 ≤ j ≤ N.

That is, different neurons receive inhibitory pulses of different strengths. We
assume that the gj are independent, normally distributed random variables,
with mean g > 0 and standard deviation σg > 0. If g is large enough and σg
is small enough, the population is still synchronized approximately. This is
illustrated in Figure 5B, which shows results of a simulation similar to that
of Figure 5A, with

N = 100, I = 0.05, g = 0.25, σg = 0.025, τI = 10. (4.13)

(Compare these parameters with those in equations 4.2.) Instead of the
nearly synchronous population spikes of Figure 5A, we now see spike vol-
leys of brief but positive durations.

To analyze the durations of these spike volleys, let us consider the initial
value problem 4.3 and 4.4 with a random g > 0. Let ρg = ρg(γ ), γ > 0 be the
probability density of g, and let g > 0 and σg > 0 be its mean and standard
deviation. Let

X = ln g. (4.14)

Combining equations 4.11 and 4.14,

T = τIX − τI ln(I − J∗). (4.15)

The only random quantity on the right-hand side of equation 4.15 is X. We
will discuss its distribution first. Let ρX = ρX(ξ), −∞ < ξ < ∞ be the
probability density of X. For −∞ < a < b < ∞,

∫ b

a
ρX(ξ) dξ = P(X ∈ (a, b)) = P(ln g ∈ (a, b)) = P(g ∈ (ea, eb))

=
∫ eb

ea
ρg(γ ) dγ =

∫ b

a
eξ ρg(eξ ) dξ.

Therefore,

ρX(ξ) = eξ ρg(eξ ) (4.16)

for all ξ . For small σg, the standard deviation of X is

σX ≈ ln′(g)σg = σg

g
. (4.17)
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From equations 4.15 and 4.16, we see that the probability density function
of T is

ρT(t) = 1
τI

e(t+τI ln(I−J∗))/τI ρg(e(t+τI ln(I−J∗))/τI ). (4.18)

For later reference, we note how formula 4.18 changes if the approximately
synchronizing inhibitory pulse arrives not at time 0 but at some time T0:

ρT(t) = 1
τI

e(t−T0+τI ln(I−J∗))/τI ρg(e(t−T0+τI ln(I−J∗))/τI ). (4.19)

Using equations 4.15 and 4.17, we see that the standard deviation of T is

σT = τIσX ≈ τI
σg

g
(4.20)

for small σg. We think of σT as a measure of the duration of the spike volleys.
Thus, the duration of the spike volleys is proportional to the product of τI,
the decay time constant of inhibition, and the coefficient of variation σg/g
of g.

To verify these results computationally, we return to the example of Fig-
ure 5B. Strictly speaking, the preceding discussion does not apply to this
example, since g, which is assumed to be normally distributed, is not guar-
anteed to be positive. However, formulas 4.16, 4.18, and 4.20 are well defined
if ρg is a normal density. Since g = 0.25 and σg = 0.025, the probability of
g ≤ 0 is extremely small. We therefore expect equations 4.16, 4.18, and 4.20
to hold with good accuracy.

We define T(j) to be the time of the spike of the jth neuron within the first
nearly synchronous spike volley. We set

T̂ =
∑N

j=1 T(j)

N
and σ̂T =

√√√√∑N
j=1(T

(j) − T̂)2

N − 1
. (4.21)

Here and for the remainder of this article, hats indicate results obtained
from numerical simulations. In the example of Figure 5B, we find

σ̂T ≈ 1.02.

We see that σ̂T is indeed close to τIσg/g, which equals 1.0 in this example.
If we double τI in this experiment, σ̂T rises from 1.02 to 2.04, in agreement
with equation 4.20.

To verify equation 4.18 numerically, we must know the value of τI ln(I −
J∗). Taking expectations on both sides of equation 4.15, we find

τI ln(I − J∗) = τIE(X) − E(T) = τIE(ln g) − E(T).
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For sufficiently small σg, this implies

τI ln(I − J∗) ≈ τI ln g − E(T),

suggesting the approximation

τI ln(I − J∗) ≈ τI ln g − T̂. (4.22)

Figure 5D shows the density ρT, as defined in equation 4.18, using the ap-
proximation 4.22, with τI = 10, and assuming that ρg is a normal density
with g = 0.25 and σg = 0.025. The histogram in Figure 5D indicates the
actual spike time density, determined from the numerical simulation. The
agreement between the theoretical prediction and the actual spike time dis-
tribution is excellent.

For later reference, we note how equation 4.22 changes when the in-
hibitory pulse arrives not at time 0 but at some time T0. From equation 4.12,
we then obtain

τI ln(I − J∗) ≈ τI ln g + T0 − T̂. (4.23)

5 Synchronization of a Population of Theta Neurons by a Single Strong
Excitatory Pulse

5.1 The Synchronous Population Spike Triggered by an Excitatory
Pulse of Uniform Strength. We next consider a population of N identi-
cal, uncoupled neurons with common constant external drive below or at
threshold, receiving a common excitatory synaptic input pulse at time 0. We
model this situation by the equations

dθj

dt
= (1 − cos θj) + (I + gs(t))(1 + cos θj), 1 ≤ j ≤ N, (5.1)

with I ≤ 0, g > 0, and

s(t) =
{

e−t/τE if t > 0
0 if t ≤ 0

with τE > 0. If the excitatory pulse is strong, it triggers a nearly synchronous
population spike soon after time 0.

To analyze this in more detail, we consider the initial value problem:

dθ

dt
= 1 − cos θ + (I + ge−t/τE)(1 + cos θ), t > 0, (5.2)

θ(0) = −2 arccos
1√

1 − I
. (5.3)
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Figure 6: (A) Approximately synchronous population spike triggered by a sin-
gle nonuniform excitatory pulse. (B) Time T between arrival of excitatory pulse
and spike triggered by it, as a function of the strength g of the pulse, for
(I, τE)=(0, ∞) (solid line), (0, 5) (dashed line), (0, 2) (dash-dotted line), (−0.01, 2)

(circles). (C) ∂T/∂g as a function of g, for the parameter values of B.

Recall from section 2 that for I < 0, the right-hand side of equation 5.3 rep-
resents the stable fixed point of the equation dθ/dt = 1− cos θ + I(1+ cos θ).
Thus, we are considering the response of a neuron at rest to an excitatory
synaptic pulse. We denote by T the first time at which the neuron spikes,
with T = ∞ if there is no spike at all.

We have no general analytic expression for T as a function of I, τE, and
g. However, it is easy to see that for fixed I and τE, T is a strictly decreasing
function of g, with limg→∞ T = 0 and limg→gc+ T = ∞ for some gc ≥ 0
(see Figure 6B). For τE = ∞, T can be computed using formula 2.2, with I



526 C. Börgers and N. Kopell

replaced by I + g and τ = 1. The formula becomes particularly simple for
I = 0; in that case,

T = π

2
1√
g
. (5.4)

The approximation τE = ∞ is accurate as long as e−T/τE ≈ 1, since then the
exponential decay in equation 5.2 can be neglected over the time interval
[0, T]. Since T → 0 as g → ∞, this means that the assumption τE = ∞ is
accurate for sufficiently large g. The assumption I = 0 is accurate when |I|/g
is sufficiently small. So this assumption too is accurate for sufficiently large g.

Figure 6B shows T as a function of g, for various values of I and τE,
demonstrating that equation 5.4 approximates T reasonably well over a
large range of parameter values.

5.2 The Approximately Synchronous Population Spike Triggered by
an Excitatory Pulse of Nonuniform Strength. If the synaptic strength in
equation 5.1 depends on j, that is, if different neurons receive excitatory
pulses of different strengths, the equations are

dθj

dt
= (1 − cos θj) + (I + gjs(t))(1 + cos θj), 1 ≤ j ≤ N.

Figure 6A shows that the resulting population spike is not perfectly syn-
chronous. (But notice that Figure 6A shows a brief time window only; the
synchronization is not perfect but fairly tight.) In the simulation underlying
this figure,

N = 100, I = 0, g = 0.25, σg = 0.025, τE = 2. (5.5)

To analyze the duration of the spike volley triggered by an excitatory
pulse of nonuniform strength, we consider the initial value problem 5.2, 5.3
with a random g > gc. If σg is small, the standard deviation of T is

σT ≈
∣∣∣∣∂T
∂g

∣∣∣∣ σg. (5.6)

For τE = ∞ and I = 0,

∂T
∂g

= π

4
g−3/2 (5.7)

by equation 5.4. Figure 6C shows ∂T/∂g as a function of g, for various val-
ues of I and τE. The figure confirms that the right-hand side of equation 5.7
approximates ∂T/∂g reasonably well for large values of g. Combining equa-
tions 5.6 and 5.7 yields

σT ≈ π

4
1√
g

σg

g
. (5.8)
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For illustration, we return to the example of Figure 6A (I = 0, τE = 2,
g = 0.25, σg = 0.025). We define T(j) to be the time of the spike of the jth

neuron, and define T̂ and σ̂T as in equation 4.21. Numerically, we find

σ̂T ≈ 0.270.

To evaluate the right-hand side of equation 5.6, we approximate ∂T/∂g nu-
merically. We find ∂T/∂g ≈ −10.30 for the parameter values of Figure 6A.
The approximation of equation 5.6, based solely on the assumption that σg is
so small that the relation between σT and σg is approximately linear, proves
fairly accurate here; it yields

σT ≈ 0.256.

The assumption τE = ∞, which underlies equation 5.8, degrades the accu-
racy, but by less than a factor of two:

σT ≈ 0.157.

6 The PING Synchronization Mechanism

6.1 PING in Fully Connected E-I Networks. We return to the example
of Figure 1A. Each of the cell groups (E and I) synchronizes rapidly, with the
population spikes of the inhibitory neurons slightly lagging behind those
of the excitatory ones. We state, in a nonrigorous way, based on numeri-
cal experience and heuristics, conditions that are sufficient to induce firing
patterns as in Figure 1A:

Condition 1: The E-cells receive external input significantly above their
spiking threshold.

Condition 2: The E → I synapses are so strong and have so short a rise
time that a surge in spiking of the E-cells quickly triggers a surge in
spiking of the I-cells.

Condition 3: The I-cells spike only in response to the E-cells.

Condition 4: The I → E synapses are so strong that a population spike
of the I-cells approximately synchronizes the E-cells.

If these four conditions are satisfied, synchronous rhythmic spiking devel-
ops as follows (Whittington et al., 2000; Tiesinga et al., 2001). Initial activity
in the E-cells triggers activity in the I-cells. This inhibits activity in the E-cells,
thereby removing the drive to the I-cells. A period of low activity in both
E- and I-cells results. When the inhibition wears off and the E-cells spike
again, they are closer to synchrony than previously because of the mecha-
nism described in section 4.1. The spiking of the E-cells causes spiking of
the I-cells, closer to synchrony than previously because of the mechanism
of section 5.1. The cycle now repeats.
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Figure 7: Illustration of conditions 2–4 from section 6.1. (A) PING is lost when
E → I synapses become too weak. (B) PING is lost as a result of too much drive
to the I-cells. (C) Rhythm is restored by adding I → I synapses. (D) PING is lost
when I → E synapses become too weak.

Condition 1 is evidently needed to drive activity. We discuss conditions 2
through 4 in more detail and present numerical results illustrating what
happens when they are violated.

When condition 2 is violated, that is, when the E → I synapses are
weak, a pattern such as the one shown in Figure 7A often develops: the
E-cells and the I-cells still synchronize, but the E-cells spike several times
between population spikes of the I-cells. The parameters in Figure 7A are
as in Figure 1A, except that gEI has been reduced from 0.25 to 0.05.



Synchronization in Sparse, Random Networks 529

Condition 3 is violated if the drive to the I-cells becomes too strong, but
can be restored by introducing I → I-synapses. We illustrate this with the
following numerical experiment. In Figure 1A, II = 0. If we raise II to 0.05,
the figure changes dramatically, as shown in Figure 7B. Here, II is strong
enough to drive asynchronous activity in the I-cells that suppresses the E-
cells altogether. Condition 3, and with it the rhythm, is restored by setting
gII = 0.25 (see Figure 7C).

We note that in the example of Figure 7C, the I-cells would spike syn-
chronously even without the E-cells. Thus, the role of the I-I synapses is
to synchronize the I-cells, replacing nearly constant inhibition by phasic
inhibition, which allows the E-cells to fire. One might therefore consider
the rhythm in Figure 7C an “ING” or “γ -I” rhythm (see section 7). The pa-
rameter regime investigated here is similar to that of Figure 7d of Tiesinga
et al. (2001). There as here, asynchronous activity of the I-cells suppresses
activity in the E-cells altogether, while synchronous activity of the I-cells
permits firing of the E-cells. However, in Figure 7C, the E-cells do play an
important role in setting the frequency of the rhythm. In the absence of the
E-cells, the rhythm would be much slower. Thus, the firing of the I-cells in
Figure 7C does come in response to the firing of the E-cells, as in PING.

Figure 7D shows what may happen when condition 4 is violated, that
is, when the I → E synapses are weak. The parameters in Figure 7D are
as in Figure 1A, except that gIE has been reduced from 0.25 to 0.05. The
inhibitory synapses no longer suffice to synchronize the E-cells. As a result,
the I-cells, which were synchronized by the E-cells in Figure 1A, are no
longer synchronized either.

A mathematical examination of conditions 1 through 4 will be the subject
of future publications.

6.2 PING in Sparsely, Randomly Connected E-I Networks. When pEI
and pIE are reduced from 1.0 to 0.5, Figure 1A turns into Figure 1B. In
analyzing the population spikes of the E-cells in Figure 1B, we make the
simplifying assumption that the population spikes of the I-cells are per-
fectly synchronous. Since the I-cells are in fact fairly tightly synchronized
in Figure 1B, this is a good approximation at least for the parameters used
in Figure 1B. When the I-cells spike, all E-cells receive inhibitory pulses.
However, different neurons receive inputs of different strengths because of
the random connectivity. The resulting approximately synchronous spike
volley of the E-cells can be analyzed using section 4.2.

We focus on one particular spike volley of the E-cells, say, the first one
following t = 100 in Figure 1B. We define T(j)

E to be the time of the spike of
the jth E-cell during this volley. We define

T̂E =
∑

j T(j)
E

NE
and σ̂E =

√√√√∑
j(T

(j)
E − T̂E)2

NE − 1
.
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From equations 2.11 and 4.20, we find the prediction

σ̂E ≈ τI

√
1 − pIE

pIENI
. (6.1)

For the first spike volley of the E-cells following t = 100 in Figure 1B, we
find numerically

σ̂E = 1.18.

The prediction of equation 6.1 is remarkably accurate:

τI

√
1 − pIE

pIENI
≈ 1.22.

We expect the shape of the spike volley to be approximately described by
equation 4.19. To evaluate equation 4.19, we must evaluate T0 − τI ln(I − J∗).
(Recall that T0 is the time at which the synchronizing inhibitory pulse ar-
rives, here the time of the inhibitory population spike immediately preced-
ing the excitatory population spike under consideration.) Following equa-
tion 4.23, we use the approximation

T0 − τI ln(I − J∗) ≈ T̂E − τI ln gIE.

The predicted and actual spike time distributions are shown in Figure 8.
The agreement is good.

We now consider the first spike volley of the I-cells following t = 100 in
Figure 1B. We define T(j)

I to be the time of the spike of the jth I-cell during
this volley, and

T̂I =
∑

j T(j)
I

NI
and σ̂I =

√√√√∑
j(T

(j)
I − T̂I)2

NI − 1
.

From equations 2.9 and 5.8, we find the prediction

σ̂I ≈ π

4
1√
gEI

√
1 − pEI

pEINE
. (6.2)

For the first spike volley of the I-cells following t = 100 in Figure 1B, we
find numerically

σ̂I = 0.151 .

The prediction of equation 6.2 is somewhat inaccurate, as was to be expected,
because it is based on three rather substantial idealizations: τE = ∞, perfect
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Figure 8: Distribution of spikes within the first spike volley following t = 100
in Figure 1B: predicted (solid line) and actual (bars).

synchrony of the E-cells, and the assumption that the I-cells return to rest
between the spike volleys of the E-cells (see equation 5.3). However, the
discrepancy is still not greater than a factor of two:

π

4
1√
gEI

√
1 − pEI

pEINE
≈ 0.0785.

We note that it would be possible to relax the assumption of perfect
synchrony in the E-cells, since we have fairly precise information about the
durations and even the shapes of the spike volleys of the E-cells. We do
not pursue this here, since our goal here is qualitative insight, not precise
quantitative information.

7 Discussion

We have analyzed the effects of sparse, random connectivity on the PING
synchronization mechanism. In particular, we have derived approximate
formulas for the durations of the spike volleys, equations 6.1 and 6.2. To
make these formulas as transparent as possible, let us use the approxima-
tions 1 − pIE ≈ 1 and 1 − pEI ≈ 1, and write

MEI = pEINE
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for the expected number of excitatory inputs per inhibitory cell and

MIE = pIENI

for the expected number of inhibitory inputs per excitatory cell. Equa-
tions 6.1 and 6.2 then become

σ̂E ≈ τI
1√
MIE

(7.1)

and

σ̂I ≈ π

4
√

gEI

1√
MEI

. (7.2)

An interesting feature of these formulas is their lack of symmetry. The time
constant τI appears in equation 7.1, but the time constant τE does not appear
in equation 7.2. Similarly, gEI appears in equation 7.2, but gIE does not appear
in equation 7.1.

If a theta neuron were driven with a constant drive equal to gEI, it would
spike periodically with a period which we call PEI. From equation 2.3,

PEI = π√
gEI

.

Using this in equation 7.2, we find

σ̂I ≈ 1
4

PEI√
MEI

. (7.3)

Let P denote the period of the PING rhythm. In the simulations of this article,

PEI � τI < P, MEI > MIE � 1. (7.4)

The inequality MIE � 1 is certainly realistic (Braitenberg & Schüz, 1998).
The inequality τI < P holds for a gamma rhythm if the inhibitory synapses
are mediated by GABAA, since the typical period of gamma oscillations is
about 25 ms and the decay time constant of GABAA synapses is about 10 ms.
It appears that PING without PEI � τI is not possible with realistic values
of τI; more will be said on this point. Combining 7.1, 7.3, and 7.4, we find

σ̂I � σ̂E � P.

Thus, our theory predicts that for PING in realistic parameter regimes,
sparse and random connectivity will not prevent either E- or I-cells from syn-
chronizing fairly tightly, but the I-cells will synchronize much more tightly
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Figure 9: PING in an E-I network with sparse, random connectivity, with nearly
instantaneous synapses.

than the E-cells. Our computational results are in agreement with these
conclusions (see Figure 1B).

It is possible to obtain PING without the condition PEI � τI if τI is made
unrealistically small. To compensate, one must then also make gIE unrealisti-
cally large. In fact, in many modeling studies, synapses have been assumed
to act instantaneously, that is, with zero rise and decay times (Brunel, 2000;
Brunel & Hakim, 1999; Izhikevich, 1999; Mirollo & Strogatz, 1990; Tiesinga
& Sejnowski, 2001); this amounts to taking a limit in which simultaneously
τI → 0 and gIE → ∞. (In Brunel, 2000, and Brunel & Hakim, 1999, there
is a delay between the spiking of the presynaptic neuron and its effect on
the postsynaptic neuron; however, this delay is not relevant for this discus-
sion.) In some regard, the behavior of instantaneous synapses is not very
different from that of synapses with more realistic time courses. However,
equations 7.1 and 7.2 predict that the effects of random connectivity will be
reduced dramatically by making the synapses instantaneous. To verify this
numerically, we repeat the simulation of Figure 1B, with τI reduced by a fac-
tor of 50 and gIE raised by a factor of 50. This closely mimics instantaneous
synapses but is computationally simpler. The result is shown in Figure 9. As
predicted, synchronization is much tighter than in Figure 1B, even though
the randomness in the connectivity is the same in Figure 9 as in Figure 1B.
The rhythm is also accelerated; this is a result of the reduction in τI.
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Our theory for the spike volleys of the E-cells is precise enough to allow
accurate predictions not just of the durations of the volleys but even of their
shapes, as shown in Figure 8. A refinement of the theory could be obtained
by taking into account the positive durations of the spike volleys of the
I-cells, perhaps using ideas similar to those of section 3.2 of Tiesinga and
Sejnowski (2001). (Recall that in section 4, the duration of the spike volleys
of the I-cells was assumed to be negligible.) However, our numerical results
indicate that in our parameter regime, neglecting the durations of the spike
volleys of the I-cells gives an excellent approximation. Tiesinga et al. (2002)
discuss a related problem, using numerical simulation primarily, and with
an emphasis on information-theoretic ideas. They also present experimental
results. For instance, Figure 8b of their article illustrates how the jitter in the
spike times of a rat hippocampal neuron decreases when the quantity npre
(our pIENI) increases, in rough qualitative agreement with equation 6.1.
(Rough qualitative agreement is the best that can be expected here, in view
of the idealized nature of our theory.)

Our theory for the spike volleys of the I-cells is less accurate than that
for the excitatory ones. However, since the synchronization of the I-cells is
typically quite tight and brought about by a crude mechanism (a burst of
excitation triggers an almost immediate, and therefore almost synchronous,
response of the I-cells), a precise theory for the spike volleys of the I-cells
is of less interest here. To create such a theory, we would need to study
how the duration of an excitatory input spike volley is related to the dura-
tion of an output spike volley triggered by it. (Recall that in section 5, the
duration of the spike volleys of the E-cells was assumed to be negligible.)
This issue is centrally important in the study of synfire chains (Diesmann,
Gewaltig, & Aertsen, 1999). Figure 3c of Diesmann et al. (1999) shows that
the strength of the input spike volley is crucial. Strong, loosely synchronous
input spike volleys can trigger tightly synchronous output spike volleys.
Using a different way of measuring synchrony, the relation between input
synchronization and output synchronization was also studied by Burkitt
and Clark (2001).

Combining ideas from the preceding two paragraphs, a more accurate
overall theory of PING may be created as follows. First, the approximate
spike time distribution within the spike volleys of the E-cells, computed
based on section 4, is taken into account in approximating the spike time
distribution within the spike volleys of the I-cells. This yields a refinement
of section 5, which in turn can be taken into account in approximating the
spike time distribution within the spike volleys of the E-cells, leading to a
refinement of section 4. Iterating this process, one may obtain increasingly
accurate approximations to the spike time distributions within spike volleys.
However, such an improved theory of PING is beyond the scope of this
article.

While working on this project, we carried out far more simulations than
have been presented here. Our conclusions hold over a wide range of pa-
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Figure 10: ING in an E-I network with sparse, random connectivity.

rameters. For instance, E→E synapses with gEE = 0.25 have little effect on
Figure 1B. Weak I→I synapses have little effect, except for the point made
at the end of section 6.1: such synapses can make gamma rhythms possible
in cases when the external drive to the I-cells is fairly strong. Strengthen-
ing I→I synapses often leads to a transition to a different synchronization
mechanism, called ING by Whittington et al. (2000) and γ -I by Tiesinga et
al. (2001). In ING, the I-cells are driven externally, not by the E-cells, and
synchronize not only the E-cells but also themselves. For ING, the widths
and shapes of the spike volleys of both E- and I-cells can be approximated
using the ideas of section 4.1. Figure 10 shows a simulation with

gIE = gII = 0.25, gEI = gEE = 0, τI = 10,

IE = II = 0.1, pIE = pII = 0.5.

As our theory would predict, the volleys of the E- and I-cells are now of equal
duration. In future work, we will investigate ING in sparse, random net-
works in more detail, including in particular the effects of E → I-synapses.

Throughout this article, we have used the theta model. As remarked in
section 2.1, the theta model is canonical for type I neuronal models in the
sense that other type I models can be reduced to it by coordinate transfor-
mations (Ermentrout & Kopell, 1986; Hoppensteadt & Izhikevich, 1997). We
therefore expect the picture to be qualitatively similar for all type I models,
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even though the details of our calculations, and in particular the details
of the centrally important Figure 5C, do depend on our choice of model.
Whether and how our results generalize to type II models remains to be
explored.

It would also be interesting to explore the effects of spike adaptation on
our analysis. Synchronization in sparsely, randomly connected networks
with spike adapation has been studied by van Vreeswijk and Hansel (2001).
They discuss synchronization of bursts (not individual spikes) via adapta-
tion (not inhibition) and observe that strong I → E synapses desynchro-
nize bursts, in contrast with our regime, in which strong I → E synapses
synchronize spikes. The model and analysis are so different from ours
that a detailed comparison would be a major endeavor, but the article
certainly suggests studying effects of adaptation in our model in the fu-
ture.

We have analyzed synchronization by common input for the purpose of
better understanding PING and ING. We remark, however, that synchro-
nization by common input is also of neurobiological interest by itself (Usrey
& Reid, 1999). We have shown that even very sparse input can synchronize
and have analyzed the desynchronizing effect of heterogeneity in input
strength.
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