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Abstract. We develop and analyze a stochastic model of directed intermittent
search for a hidden target on a one-dimensional track. A particle injected at one
end of the track randomly switches between a stationary search phase and a
mobile, non-search phase that is biased in the anterograde direction. There is
a finite possibility that the particle fails to find the target due to an absorbing
boundary at the other end of the track or due to competition with other targets.
Such a scenario is exemplified by the motor-driven transport of mRNA granules
to synaptic targets along a dendrite. We first calculate the hitting probability
and conditional mean first passage time (MFPT) for finding a single target.
We show that an optimal search strategy does not exist, although for a fixed
hitting probability, a unidirectional rather than a partially biased search strategy
generates a smaller MFPT. We then extend our analysis to the case of multiple
targets, and determine how the hitting probability and MFPT depend on the
number of targets.
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1. Introduction

There is increasing experimental evidence to suggest that local protein synthesis in the dendrites
of neurons plays a crucial role in mediating persistent changes in synaptic structure and function,
which are thought to be the cellular substrates of long-term memory [1]–[3]. This is consistent
with the discovery that various mRNA species, as well as important components of the
translational machinery such as ribosomes, are distributed in dendrites. Although many of the
details concerning mRNA transport and localization are still unclear, a basic model is emerging.
First, newly transcribed mRNA within the nucleus binds to proteins that inhibit translation, thus
allowing the mRNA to be sequestered away from the protein-synthetic machinery within the
cell body. The repressed mRNAs are then packaged into ribonucleoprotein granules that are
subsequently transported into the dendrite via kinesin and dynein motors along microtubules2.
Finally, the mRNA is localized to an activated synapse by actin-based myosin motor proteins,
and local translation is initiated following neutralization of the repressive mRNA-binding
protein. Details regarding the motor-driven transport of mRNA granules in dendrites have
been obtained by fluorescently labeling either the mRNA or mRNA-binding proteins and using
live-cell imaging to track the movement of granules in cultured neurons [4]–[6]. It has been
found that under basal conditions the majority of granules in dendrites are stationary or exhibit
small oscillations around a few synaptic sites. However, other granules exhibit rapid retrograde
(towards the cell body) or anterograde (away from the cell body) motion consistent with
bidirectional transport along microtubules [7]. These movements can be modified by neuronal
activity as illustrated in figure 1. In particular, there is an enhancement of dendritically localized
mRNA due to a combination of newly transcribed granules being transported into the dendrite,
and the conversion of stationary or oscillatory granules already present in the dendrite into
anterograde-moving granules.

The translocation of an mRNA granule to an activated synapse is an example of a general
class of problems involving the search for a hidden target, that is, a target of unknown location

2 Microtubules are polarized filaments with biophysically distinct plus and minus ends. In proximal dendrites
(close to the cell body) microtubules have mixed orientation, so that bidirectional transport could be mediated by
a plus-end motor such as kinesin. On the other hand, in distal dendrites microtubules have the same polarity (with
the plus end oriented away from the cell body), so that bidirectional transport would require the combined action
of kinesin and a minus-end motor such as dynein [7].
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Figure 1. Schematic diagram illustrating mRNA granule mobility in dendrites.
Under basal conditions most granules are either stationary or exhibit
localized oscillations, whereas a minority exhibit bidirectional transport. KCl
depolarization activates transcription of mRNA at the cell body and converts
existing stationary granules into anterograde granules [5].

which can only be detected when the searcher is within a certain range. Other striking examples
include the behavior of foraging animals [8]–[11], the active transport of reactive chemicals in
cells [12], and a promoter protein searching for a specific target site on DNA [13]–[16]. In all
of these cases the searching object tends to alternate between an active search phase and a bulk
displacement phase that is non-receptive to the target. In the case of DNA, it has been established
that the search phase consists of one-dimensional diffusion during which the protein remains in
contact with the DNA. This alternates with a three-dimensional diffusion phase in which a
protein ‘hops’ from one site to another by dissociating from one site and then re-associating
elsewhere in the same chain (see [14] for a review). A stochastic model of this process that
is in good agreement with experiments suggests the existence of an optimal search strategy,
which is achieved when both regimes have the same duration [15, 16]. In the case of foraging
animals and active transport in cells, the searcher switches between a slow motion (diffusive) or
stationary phase in which target detection can occur and a fast motion ‘ballistic’ phase. Recently,
a stochastic model of the latter form of intermittent search process has been developed in which
the optimal strategy is determined by calculating the durations of each phase that minimize the
mean search time to find a single hidden target [12, 17, 18]. In these studies, it is assumed that
(i) the motion of the searcher is unbiased, (ii) the searcher initiates its search at some random
location within the physical domain, and (iii) the probability of finding the target is equal to
unity. All of these assumptions are reasonable when considering the bidirectional transport of
mRNA granules within the dendrite under basal conditions, see figure 1 (top). However, they
break down when considering the directed transport of newly synthesized granules from the
cell body to activated synapses as shown in figure 1 (bottom). Clearly assumptions (i) and (ii)
no longer hold, since the motion is biased in the anterograde direction and the initial location
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Figure 2. Stochastic model of directed intermittent search along a one-
dimensional track of length L . A target is located at a fixed but unknown location
x = X . The particle is injected at one end (x = 0) and its motion is biased in the
anterograde direction (towards the end x = L).

is always at the cell body. Moreover, there is now a nonzero probability that the searcher does
not find the target due to degradation at the distal end of the dendrites and possible absorption
by another activated target (see assumption (iii)). It is also possible that an activated synaptic
target may be only partially hidden in the sense that it might emit a signal that increases the
probability of a granule stopping in a neighborhood of that target. However, we will not consider
this possibility here because the details of such signaling mechanisms are currently unknown.

Motivated by the problem of mRNA transport, we present and analyze a stochastic model
of directed intermittent search for a hidden target on a one-dimensional track. A particle injected
at one end of the track randomly switches between a stationary search phase and a mobile, non-
search phase that is biased in the anterograde direction. There is a finite possibility that the
particle fails to find the target due to an absorbing boundary at the other end of the track or due
to competition with other targets. The basic model is presented in section 2. We then calculate
the hitting probability and conditional mean first passage time (MFPT) for finding a single
target in the case of unidirectional search (section 3) and partially biased search (appendices A
and B). We show that an optimal search strategy does not exist, although for a fixed hitting
probability, a unidirectional rather than a partially biased search strategy generates a smaller
MFPT (section 4). Finally, we analyze unidirectional search in the case of n hidden targets, and
determine the maximum hitting probability for finding the nth target given that the previous
n − 1 targets are not found (section 5). We show that in the case of large n, it is preferable to
spend more time in the mobile, non-search phase than in the stationary search phase.

2. Stochastic model of cargo transport in a dendrite

Consider a single motor-driven particle moving along a one-dimensional track of length L , see
figure 2. The particle could represent an mRNA granule and the track could be a microtubular
filament running the length of a dendrite; for simplicity, we ignore any branching. Suppose that
at time t = 0 the particle enters one end of the track, which we take to be at x = 0. Within the
interior of the track, 0 < x < L , the particle can be in one of three states labeled by n = 0, ±:
stationary (n = 0), moving to the right (anterograde) with speed v+ (n = +), or moving to the
left (retrograde) with speed v− (n = −). Transitions between the three states are governed by a
discrete Markov process. We further assume that there is a hidden (synaptic) target at a fixed
but unknown location x = X . If the particle is within a distance a of the target and is in the
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stationary state, then the particle can detect or, equivalently, be absorbed by the target at a rate k.
We assume throughout that a < X and a < L − X so the domain of detectability lies fully within
the interval [0, L].

Let Z(t) and N(t) denote the random position and state of the particle at time t and define
P(x, t, n | y, 0, m) dx as the joint probability that x 6 Z(t) < x + dx and N (t) = n given that
initially the particle was at position Z(0) = y and was in state N (0) = m. Setting

Pn(x, t) ≡ P(x, t, n|y, 0, +) (2.1)

with initial condition Pn(x, 0) = δ(x − y)δn,+, we have the following master equation describing
the evolution of the probability densities for t > 0:

∂t P+(x, t) = −v+∂x P+(x, t) − β+ P+(x, t) + αP0(x, t), (2.2a)

∂t P−(x, t) = v−∂x P−(x, t) − β− P−(x, t) + αP0(x, t), (2.2b)

∂t P0(x, t) = β+ P+(x, t) + β− P−(x, t) − 2αP0(x, t) − kχ(x − X)P0(x, t). (2.2c)

Here α, β± are the transition rates between the stationary and mobile states as indicated in
figure 2. We have introduced the indicator function χ according to

χ(x) =

{
1 if |x | < a,

0 otherwise.
(2.3)

Equations (2.2a)–(2.2c) are supplemented by a reflecting boundary condition at x = 0 and an
absorbing boundary condition at x = L . That is,

v− P−(0, t) = v+ P+(0, t), P−(L , t) = 0. (2.4)

The absorbing boundary takes into account the fact that granules can be degraded or absorbed
by other targets downstream to the given target (see also section 5). Finally, we assume that the
transport is partially biased in the anterograde direction by taking

ϑ− ≡
β+

v+
−

β−

v−

< 0.

If the velocities in the two directions are equal, v+ = v− = v, then this condition implies that
the particle spends more time in the anterograde state than the retrograde state. Unidirectional
transport is obtained in the limit β− → ∞.

Let J(t) denote the probability flux due to absorption by the target at X:

J (t) = k
∫ X+a

X−a
P0(x, t) dx . (2.5)

Define the hitting probability 5 to be the probability that the particle eventually finds the target,
that is, it is absorbed somewhere in the interval X − a 6 x 6 X + a rather than at the end x = L:

5 =

∫
∞

0
J (t) dt. (2.6)
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The conditional mean first passage time [19] (MFPT) T is then defined to be the mean time it
takes for the particle to find the target given that it is not absorbed at x = L:

T =

∫
∞

0 t J (t) dt∫
∞

0 J (t) dt
. (2.7)

The two quantities T and 5 characterize the efficiency of the stochastic search process. Clearly,
it would be advantageous for the particle to minimize the search time T and maximize the
hitting probability 5. However, as we show in this paper, these two requirements compete with
each other so that, in contrast to previous studies of intermittent search for which 5 = 1 and
the motion is unbiased [12, 17, 18], there is not a single optimal search strategy. This can be
seen heuristically in the case of unidirectional transport where the particle is either stationary
or undergoes anterograde motion. Here the particle can reach the target more quickly by having
a higher probability of being in the mobile state. However, this also increases the chance of
overshooting the target without detecting it and thus reduces the hitting probability. For the
particular application to mRNA transport, it could be argued that the only important factor is
minimizing the MFPT irrespective of the hitting probability, since many mRNA granules are
synthesized in the nucleus and transported into the dendrite for delivery to synaptic targets.
However, as we explore further in section 5, synaptic targets compete for resources so that
one expects mRNA transport to be biased towards targets closer to the nucleus. This could
be important when considering the role of protein synthesis in synaptic plasticity. Hence, it is
important to keep track of both the hitting probability and the MFPT.

3. Calculation of 5 and T

There are two alternative methods for calculating the hitting probability 5 and the conditional
MFPT T defined by equations (2.6) and (2.7), one based on Laplace transforming the forward
master equation and the other based on solving the corresponding backward equation [19].
We will follow [12, 17, 18] and use the latter approach here. For the sake of illustration,
we will focus on the simpler problem of unidirectional intermittent search, for which
equations (2.2a)–(2.2c) reduce to the two-state Markov process

∂t P+ = −v∂x P+ + αP0 − β P+, (3.1a)

∂t P0 = β P+ − αP0 − kχ(x − X)P0. (3.1b)

In this case there is no need to introduce any supplementary boundary conditions, since the
particle cannot return to the origin nor find the target once it has crossed the point x = X + a <

L . Starting from the associated Chapman–Kolmogorov equation, it can be shown that the
backward master equation for the two-state model is given by

∂t Q+ = v∂y Q+ − β[Q+ − Q0], (3.2a)

∂t Q0 = α[Q+ − Q0] − kχ(y − X)Q0, (3.2b)
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where Qm(y, t) = P(x, t, 0|y, 0, m). For notational convenience, we have dropped the subscript
+ on the velocity v and transition rate β. Let γm(y, t) be the total probability that the particle is
absorbed by the target after time t given that it started at y in state m. That is,

γm(y, t) = k
∫

∞

t

∫ X+a

X−a
P(x, t ′, 0|y, 0, m) dx dt ′. (3.3)

Integrating equations (3.2a) and (3.2b) with respect to x and t and using ∂tγm(y, t) =

−k
∫ X+a

X−a P(x, t, 0|y, 0, m) dx , we find that

∂tγ+ = v∂yγ+ + β(γ0 − γ+), (3.4a)

∂tγ0 = α[γ+ − γ0] − kχ(y − X)γ0. (3.4b)

The probability γm(y, t) can be used to define two important quantities that characterize the
efficiency of the search process. The first is the hitting probability

πm(y) = γm(y, 0) (3.5)

and the second is the conditional MFPT Tm(y),

Tm(y) = −

∫
∞

0
t
∂tγm(y, t)

γm(y, 0)
dt =

∫
∞

0 γm(y, t) dt

γm(y, 0)
(3.6)

after integration by parts. It follows from definitions (2.6) and (2.7) that

5 = π+(0), T = T+(0). (3.7)

We first calculate the hitting probability πm(y). Setting t = 0 in equations (3.4a) and (3.4b),
and using ∂tγm(y, 0) = −kχ(y − X)δ0,m shows that

0 = v∂yπ+ + β(π0 − π+), (3.8a)

−kχ(y − X) = α[π+ − π0] − kχ(y − X)π0. (3.8b)

Solving equation (3.8b) for π0(y) gives

π0(y) =
απ+(y) + kχ(y − X)

α + kχ(y − X)
. (3.9)

Substituting this into equation (3.8a) then yields

∂yπ+(y) =
β

v

k

α + k
(π+(y) − 1)χ(y − X). (3.10)

This equation can be solved separately in the three domains 0 < x < X − a, X − a < x < X + a
and X + a < x < L . Continuity across the boundaries at x = X ± a together with the condition
π+(y) = 0 for y > X + a yields the solution

π+(y) =


1 − e−2λa, y < X − a,

1 − e−λ(X+a−y), X − a < y < X + a,

0, y > X + a,

(3.11)
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where

λ =
β

v

k

α + k
. (3.12)

In order to calculate the MFPT Tm(y), we integrate equations (3.4a) and (3.4b) with respect
to t, using the identity

∫
∞

0 ∂tγm(y, t) dt = −πm(y):

−π+ = v
∂(π+T+)

∂y
+ β(π0T0 − π+T+), (3.13a)

−π0 = α[π+T+ − π0T0] − kχ(y − X)π0T0. (3.13b)

Solving equation (3.13b) for T0 in terms of T+, substituting the result into equation (3.13a)
and setting S+(y) ≡ T+(y)π+(y) leads to the equation

∂y S+(y) =
β

v

kχ(y − X)

α + kχ(y − X)
S+(y) −

1

v

(
β

α + kχ(y − X)
π0(y) + π+(y)

)
. (3.14)

This can be solved along similar lines to equation (3.10) by matching solutions in the
three domains 0 < x < X − a, X − a < x < X + a and X + a < x < L , and requiring that
S+(X + a) = 0. After some algebra we obtain the result

T+(y) =


(X − a − y)µ1 −

2aµ2

e2λa − 1
+ µ3, y < X − a,

µ3 −
(X + a − y)µ2

eλ(X+a−y) − 1
, |y − X | < a,

(3.15)

where

µ1 =
1

v

(
1 +

β

α

)
, µ2 =

1

v

(
1 +

αβ

(α + k)2

)
, µ3 =

α + β + k

βk
. (3.16)

Note that as expected T+(y) → ∞ as y → X + a. Finally, combining equations (3.7), (3.11) and
(3.15),

5 = 1 − e−2λa, T = (X − a)µ1 −
2aµ2

e2λa − 1
+ µ3. (3.17)

The calculation of 5 and T proceeds in a similar fashion for the full three-state model
given by equations (2.2a)–(2.2c). The details are presented in the appendices. In figures 3
and 4, we plot 5 and T as functions of α and β+ with β− and v+ = v− = v fixed. The special
case of unidirectional transport is recovered by taking the limit β− → ∞. It can be seen that
increasing the parameter α, which controls how much time the particle spends in the stationary
search mode, decreases both the hitting probability and the conditional MFPT, see figure 3.
Similarly, increasing the parameter β+, which controls how much time the particle spends in
the anterograde mobile state, increases both the hitting probability and the MFPT, see figure 4.
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Figure 3. Partially biased anterograde transport. (a) The hitting probability 5

and (b) the MFPT T are plotted as functions of the parameter α for fixed β+ =

1 s−1 and various values of β−: solid black curve (β− = 1.5 s−1), dashed curve
(β− = 2.5 s−1) and solid gray curve (unidirectional). Other parameter values are
X = 10 µm, L = 20 µm, a = 1 µm, k = 0.05 s−1, v± = 0.1 µm s−1.
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Figure 4. Same as figure 3 except (a) the hitting probability 5 and (b) the
conditional MFPT T are now plotted as functions of β+ with fixed α = 0.5 s−1.

Our results are consistent with the intuitive picture that one cannot simultaneously maximize
the hitting probability and minimize the MFPT. Note that we take parameter values consistent
with experimental studies of mRNA transport [4]–[6]. During unidirectional motion average
velocities are found in the range 0.05–0.2 µm s−1, whereas the duration of a moving phase
tends to be in the range 1–10 s. Dendrites in cultured cells range in length from 10–100 µm.

4. Suboptimal search

A useful way to characterize the efficiency of the search strategy is to determine the minimum
MFPT (if it exists) for a fixed hitting probability. Let us first consider the unidirectional case.
Using equation (3.17) to express β as a function of α and 5 (with all other parameters fixed),
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Figure 5. (a) Plot of MFPT T as a function of α for fixed 5 = 0.8 and various β−.
Other parameters are v± = 0.1µms−1, X = 10µm, a = 1µm, k = 0.05 s−1, L =

20µm. Unidirectional case is shown as a solid black curve. (b) Corresponding
plot of minimum search time T (with respect to variation in α) as a function
of the hitting probability 5 for β− = 1s−1. Unidirectional case (black curve) is
plotted for αmax = 0.5 s−1.

we find that

β = B(α, 5) ≡ −
v(α + k) ln(1 − 5)

2ak
. (4.1)

Substituting into the corresponding formula for the MFPT we obtain a function of the form
T = T (α,B(α, 5)). Solving the equation ∂αT (α,B(α, 5)) = 0 for α formally yields two
solutions

α±(5) = k
−(X − a)5 ±

√
−2a(X − a)(1 − 5)5

(X − a)5 + 2a(1 − 5)
. (4.2)

However, it is evident that −2a(X − a)(1 − 5)5 < 0 and therefore α±(π) will always be
complex valued. Thus no global minimum or maximum exists. This means we can choose
any hitting probability 5 ∈ [0, 1] and the corresponding MFPT T (α,B(α, π)) will always be
a decreasing function α. This suggests that for fixed 5, the MFPT could be minimized by
taking the limit α → ∞. However, this limit is not physically reasonable, since there will be a
minimum time that the particle has to spend in the stationary state, that is, there exists an upper
bound α 6 αmax. It follows that the minimum search time for fixed 5 is T (αmax,B(αmax, 5)).

We can proceed in a similar fashion for partially biased anterograde transport by
eliminating the transition rate β+ in terms of 5, α, β−. We now find that for fixed 5 and
β−, the MFPT is a unimodal function of α with a unique minimum at α = αopt(β−, 5), see
figure 5(a). However, the minimum search time is larger than that found for unidirectional
transport (β− → ∞) at the same value of α. This is further illustrated in figure 5(b), where
we plot T (αopt, β−, 5) as a function of 5 for various values of β−. Our results are nontrivial,
since allowing a nonzero probability of moving in the retrograde direction might have enhanced
the hitting probability without extracting too high a cost in terms of the conditional MFPT.
We conclude from our analysis that in one dimension an effective strategy is to perform
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Figure 6. Schematic diagram of unidirectional search with multiple targets.

unidirectional intermittent search with fast switching between the mobile and immobile states.
This is consistent with experimental observations regarding the activity-dependent anterograde
transport of mRNA granules to unknown synaptic targets on a dendrite, see figure 1.

Note that the results depend weakly on the track length L , see appendices. For it can be
checked that 5 and T depend on L through terms dominated by the factor eϑ−(L−X). If ϑ− < 0
then these terms vanish in the limit L → ∞ for fixed target position X. Hence, the absorbing
boundary does not contribute significantly to 5 and T unless the target is in the neighborhood
of the boundary; the size of this neighborhood shrinks as the bias ϑ− increases. In other words,
once the particle has moved sufficiently beyond the target, its probability of returning to the
target is negligible. It follows that one could replace the absorbing boundary by a population of
downstream targets, for example, without significantly altering the results (see section 5).

5. Multiple targets and competition

So far we have considered anterograde intermittent search for a single hidden target, under the
assumption that additional targets are further downstream. As long as the downstream targets
are sufficiently far from the upstream target and transport is biased in the anterograde direction,
they will have little effect on the hitting probability and conditional MFPT of the upstream
target. However, an upstream target will have a significant effect on the search for downstream
targets. In order to explore this phenomenon, let us consider two identical targets at positions
x = X1 and X2 where the distance between the two targets is l = X2 − X1 > 2a, see figure 6.
Since unidirectional transport is more effective than partially biased transport (see section 4)
and is simpler to analyze, we will consider the former here. In this case the downstream target
has no influence on the upstream target.

First, recall from section 3 that the hitting probability π+(y) for a single target at X is
independent of the starting position y provided that y < X − a. That is, π+(y) = 5 with 5

given by equation (3.17). The probability that the particle will miss the first target and then find
the second target is simply

5̂ = (1 − 5)5. (5.1)

This is easily generalized to the case of multiple targets by considering a series of trials that
have probability 5 of success and 1 − 5 of failure. In particular, the probability of missing the
first n targets and finding the (n + 1)th target is

5̂ = (1 − 5)n5. (5.2)

Note that the hitting probability is independent of the spacing between the targets.
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Let T̂ denote the conditional MFPT to find the second target. It can be decomposed into
two parts, T̂ = T̂ 1 + T̂ 2, where T̂ 1 is the conditional MFPT that the particle reaches x = X1 + a
without finding the first target and T̂ 2 is the conditional MFPT that the particle finds the second
target starting at a distance l − a from it. The latter can be written down directly using our results
from section 3, see equation (3.17), namely

T̂ 2 = (X2 − X1 − 2a)µ1 −
2aµ2

e2λa − 1
+ µ3. (5.3)

The calculation of T̂ 1 follows along similar lines to the analysis of section 3.1. Let π c
m(y) =

1 − πm(y) be the probability of missing the first target given that the particle starts at position
y in state m. Clearly π c

m(y) = 1 for y > X1 + a. Let γ c
m(y) denote the corresponding probability

that the particle passes the first target after a time t,

γ c
m(y, t) = v

∫
∞

t
P(X1 + a, t ′, + | y, 0, m) dt ′, (5.4)

where v is the velocity in the anterograde direction. It follows that π c
m(y) = γ c

m(y, 0) and the
conditional MFPT for reaching X1 + a without finding the first target is

T c
m(y) =

∫
∞

0 γ c
m(y, t) dt

γ c
m(y, 0)

. (5.5)

Since γ c
m(y, t) satisfies equations identical in form to γm(y, t), see equations (3.4a) and (3.4b),

we can integrate with respect to t to obtain the following equations for Sc
m(y) = π c

m(y)T c
m(y):

−π c
+ = v

d

dy
(Sc

+) + β(Sc
0 − Sc

+), (5.6a)

−π c
0 = αSc

+ − (α + kχ(y − X1))Sc
0, (5.6b)

which are supplemented by the boundary conditions S+(X1 + a) = 0 and π c
+(X1 + a) = 1.

Eliminating Sc
0 we obtain the single equation

∂y Sc
+(y) =

β

v

kχ(y − X)

α + kχ(y − X)
Sc

+(y) −
1

v

(
β

α + kχ(y − X)
π c

0 (y) + π c
+(y)

)
, (5.7)

where π c
m(y) = 1 − πm(y) with πm(y) given by equations (3.9) and (3.11). Solving the above

equation along similar lines to (3.14)), we obtain the solution

T̂ 1 =
Sc

+(0)

π c
+(0)

= Ae2aλ

= 2µ2a + µ1(X1 − a). (5.8)

Finally, adding this to equation (5.3) gives us the conditional MFPT T̂ to the second target in
the full two target system

T̂ = 2aµ2

(
1 −

1

e2λa − 1

)
+ µ1(X2 − 3a) + µ3. (5.9)
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Figure 7. Anterograde unidirectional transport with two targets located at X1 =

5 µm and X2 = 10 µm. (a) The hitting probability 5̂ and (b) the MFPT T̂ of
the downstream target are plotted as functions of the parameter α for fixed β =

0.5 s−1. The dashed curves show the corresponding results when the upstream
target is absent. Other parameter values are X = 10 µm, a = 1 µm, k = 0.5 s−1

and v = 0.12 µm s−1.
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Figure 8. Same as figure 7 except that 5̂ and T̂ are plotted as functions of β for
fixed α = 0.5 µm.

We are interested in how the behavior of the search as a function of the state transition
rates changes when additional targets are present. As seen in figures 7 and 8, the addition of a
target between a searcher and its intended target qualitatively changes the behavior of the hitting
probability as a function of the state transition rates. The hitting probability now has a maximum
value when either α or β is held fixed. Suppose that we maximize 5̂ with respect to β for α

fixed. In the case of n + 1 targets, equations (3.17) and (5.2) show that 5̂ = e−2naλ
− e−2(n+1)aλ

with λ given by equation (3.12). The condition ∂5̂/∂β = 0 then implies that the maximum
hitting probability is achieved when α and β satisfy the linear relationship

βmax(α) =
ln (1 + 1/n) v

2ka
(α + k). (5.10)
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Figure 9. (a) The hitting probability as a function of α for various values
of n. (b) The maximum hitting probability as a function of n. (c) The curve
βmax/α

∗
= 1 separating the α–k plane into two regions for n = 1. (d) The ratio

βmax/α as a function of α for two different values of k.

Substitution of this into equation (5.2) yields the maximum hitting probability

5̂max =
nn

(n + 1)n+1
. (5.11)

Interestingly the maximum hitting probability depends only on the number of targets, as
illustrated in figures 9(a) and (b).

The ratio β/α tells us how much time is spent moving relative to how much time is spent
searching. At the maximum hitting probability, this ratio can be characterized as follows. Let α∗

satisfy βmax/α
∗
= 1. Then

α∗(k) =
kv ln (1 + 1/n)

2ak − v ln (1 + 1/n)
. (5.12)
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Since α must be positive it follows that α∗(k) only exists for certain values of k. Let

k∗
=

v ln (1 + 1/n)

2a
. (5.13)

If k < k∗ then α∗(k) does not exist and the ratio βmax/α is always greater than one so that more
time is spent searching than moving. On the other hand, if k > k∗ then the curve α = α∗(k)

exists and is a phase boundary separating the parameter regimes βmax/α > 1 and βmax/α < 1,
see figures 9(c) and (d). Moreover, for large n

k∗
=

1

n

v

2a
+ O(n−2), (5.14)

and the condition k > k∗ can be written as

1

k
<

2an

v
. (5.15)

This is nothing more than the statement that the average time necessary to find the target on
entering the searching state is less than the time necessary to traverse the n target intervals
prior to reaching the intended target. Finally, in the limit n → ∞, we see that k∗

→ 0 and the
maximum hitting probability occurs for βmax/α < 1. In other words, when many targets compete
for a particle intended for a specific target, the hitting probability is maximized when more time
is spent moving than searching. This is consistent with experimental observations of the motor-
driven transport of mRNA granules, which suggest that unidirectional transport is characterized
by long periods of continuous motion interrupted by brief pauses.

6. Discussion

In this paper, we have extended recent work on stochastic models of intermittent search in
order to allow for both biased directed transport and failure to find a target. In the case of
a one-dimensional directed search problem, there are conflicting demands of minimizing the
conditional MFPT and maximizing the hitting probability. We showed that for a fixed hitting
probability, a unidirectional search strategy yields a smaller MFPT than one that is partially
biased in the same direction. We also determined in the unidirectional case how the hitting
probability for a specific target decreases with the number of competing targets. A major
motivation for our study was the experimental observation that activation of synaptic targets can
signal the nucleus to transcribe new mRNA, which is then packaged within ribonucleoprotein
granules and transported in an anterograde direction along the microtubules of a neuron’s
dendrite.

There are a number of interesting extensions of our work. First, the example of mRNA
transport suggests that it would be worthwhile exploring directed intermittent search on a tree-
like branching structure. One way to approach this problem would be to carry out a quasi-steady-
state reduction of the full model along the lines of Reed et al [20], in order to derive an effective
advection–diffusion equation for motor-driven transport on a dendritic tree. Such a model could
also be used to develop a population-level description of mRNA transport, in which there are
multiple mRNA granules searching for multiple synaptic targets. Incorporating both global and
local signaling mechanisms from synaptic targets would then allow us to explore the role of
mRNA transcription, translation and transport in long-term synaptic plasticity [2].
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Although our modeling and analysis were motivated by the problem of mRNA transport,
directed or biased intermittent search arises in a wide range of phenomena including many
forms of chemotaxis, in which an organism searches for a food source by moving up a chemical
concentration gradient [21]. One apparent difference between chemotaxis and mRNA transport
(besides the spatial dimension of the search) is that the target emits a diffusing signal in the
former case. However, it is also possible that an activated synaptic target is only partially
hidden, in the sense that it might emit a short-range signal that increases the probability of a
granule stopping in the neighborhood of that target. Finally, it would be interesting to extend
our analysis of directed intermittent search to higher spatial dimensions where there is a much
weaker spatial correlation between the slow and fast phases.

Appendix A. Hitting probability for partially biased anterograde transport

For the full three-state model, the hitting probabilities πm(y), m = 0, ±, satisfy the equations (cf
equations (3.8a) and (3.8b))

0 = v+∂yπ+ + β+(π0 − π+), (A.1)

0 = −v−∂yπ− + β−(π0 − π−), (A.2)

−kχ(y − X) = α(π+ + π− − 2π0) − kχ(y − X)π0. (A.3)

Solving (A.3) for π0 and substituting the result into (A.1) and (A.2) gives

∂yπ+(y) + ν+((u(y) − 1)π+(y) + u(y)π−(y)) = −ν+w(y), (A.4)

∂yπ−(y) − ν−(u(y)π+(y) + (u(y) − 1)π−(y)) = ν−w(y), (A.5)

where

ν± =
β±

v±

, u(y) =
α

2α + kχ(y − X)
, w(y) =

kχ(y − X)

2α + kχ(y − X)
. (A.6)

Equations (A.4) and (A.5) are supplemented by a reflecting boundary condition at y = 0 and an
absorbing boundary at y = L:

π+(0) = π−(0), π+(L) = 0. (A.7)

Following along similar lines to the unidirectional case, we must solve for π±(y) in three
different regions: 0 < y < X − a, X − a < y < X + a and X + a < y < L . The solution in each
of these regions will have two unknown integration constants so that we require six conditions.
Two are given by the boundary conditions, whereas the other four are obtained by requiring
continuity in π+(y) and π−(y) at y = X ± a.

In region I (06 y 6 X − a) we have χ(y − X) = 0 so that u(y) = 1/2, w(y) = 0, and
equations (A.4) and (A.5) become

∂yπ+(y) +
ν+

2
(−π+(y) + π−(y)) = 0, (A.8)

∂yπ−(y) +
ν−

2
(−π+(y) + π−(y)) = 0. (A.9)

New Journal of Physics 11 (2009) 023033 (http://www.njp.org/)

http://www.njp.org/


17

Introducing the transformations s =
1
2(π+ + π−) and d =

1
2(π+ − π−),

∂ys(y) − ϑ+d(y) = 0, ∂yd(y) − ϑ−d(y) = 0, (A.10)

where ϑ+ =
1
2(ν+ + ν−) and ϑ− =

1
2(ν+ − ν−). Solutions to these equations have the form

s(y) = AI
ϑ+

ϑ−

eϑ− y + BI, d(y) = A1eϑ− y,

where A1 and B1 are unknown constants. The reflecting boundary condition π+(0) = π−(0)

implies that AI = 0 so that solution is a constant region I, which is the desired hitting
probability 5:

π±(y) = 5. (A.11)

The equations in region III (X + a 6 y 6 L) are the same as in region I so that we have
solutions of the form

π+(y) = AIIIν+eϑ− y + BIII, π−(y) = AIIIν−eϑ− y + BIII.

The absorbing boundary condition π+(L) = 0 implies that BIII = −AIIIν+eϑ−L . Thus the solution
in region III is

π+(y) = AIIIν+(eϑ− y
− eϑ−L), π−(y) = AIII(ν−eϑ− y

− ν+eϑ−L). (A.12)

In region II (X − a 6 y 6 X + a) we have χ(y − X) = 1 so that u(y) = σ ≡ α/(2α + k)

and w(y) = δ ≡ k/(2α + k). Hence, (A.4) and (A.5) can be written as the matrix equation(
∂yπ+(y)

∂yπ−(y)

)
+ N

(
π+(y)

π−(y)

)
=

(
−ν+δ

ν−δ

)
, (A.13)

where

N =

(
ν+(σ − 1) ν+σ

−ν−σ −ν−(σ − 1)

)
. (A.14)

This matrix equation can be solved in terms of the eigenvalues λ j and eigenvectors (ξ j , 1)T of
N , j = 1, 2: (

π+(y)

π−(y)

)
= 8(y)

(
AII

BII

)
+

(
1
1

)
, (A.15)

where 8(y) is the fundamental solution matrix

8(y) =

(
ξ1e−λ1 y ξ2e−λ2 y

e−λ1 y e−λ2 y

)
, λ1,2 = ϑ−(σ − 1) ± 1, (A.16)

and

1 =

√
ϑ2

−σ 2 + ϑ2
+(1 − 2σ), ξ1,2 =

1

ν−σ
(ϑ+(1 − σ) ∓ 1). (A.17)
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Finally, we match the three solutions (A.11), (A.12) and (A.15) to determine the unknown
constants 5, AII, BII, and AIII by requiring continuity at y = X − a and X + a:

5 = 1 −
2ϑ−(ξ1 − ξ2)

�
, (A.18)

AII =
2ϑ−

�
(ξ2 − 1)eλ1(X−a), (A.19)

BII = −
2ϑ−

�
(ξ1 − 1)eλ2(X−a), (A.20)

AIII =
1

�
(ξ1 − 1)(ξ2 − 1)(e−2aλ1 − e−2aλ2)e−ϑ−(X+a), (A.21)

where

� = −ν+(ξ2 − 1)(ξ1 − 1)(e−2aλ1 − e−2aλ2)eϑ−(L−X−a) (A.22)

+(ξ2 − 1)(ν−ξ1 − ν+)e−2aλ1 − (ξ1 − 1)(ν−ξ2 − ν+)e−2aλ2 .

Equation (A.18) is the desired result.

Appendix B. Conditional MFPT for partially biased anterograde transport

The equations for the conditional MFPT take the form (cf equations (3.13a) and (3.13b))

v+∂y(T+π+) + β+(T0π0 − T+π+) = −π+, (B.1)

v−∂y(T−π−) − β−(T0π0 − T−π−) = π−, (B.2)

α(T+π+ + T−π−) − (2α + kχ(y − X))T0π0 = −π0. (B.3)

Let Sm ≡ Tmπm and solve (B.3) for S0. This yields

S0(y) = u(y)(S+(y) + S−(y)) +
π0u(y)

α
. (B.4)

Substituting (B.4) into (B.1) and (B.2) gives

∂y S+(y) + ν+((u(y) − 1)S+(y) + u(y)S−(y)) = −

(
π+(y)

v+
+

ν+u(y)π0(y)

α

)
, (B.5)

∂y S−(y) − ν−(u(y)S+(y) + (u(y) − 1)S−(y)) =

(
π−(y)

v−

+
ν−u(y)π0(y)

α

)
. (B.6)

Equations (B.5) and (B.6) are solved by imposing the boundary conditions

S+(0) = S−(0), S+(L) = 0, (B.7)

along with requiring continuity in S+(y) and S−(y) at y = X ± a. Given the solution for Sm(y),
the conditional MFPT is T = S+(0)/5.
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The calculation of the conditional MFPT for biased bidirectional transport proceeds along
similar lines to the hitting probability in appendix A. In region I we have u(y) =

1
2 and w(y) = 0

so that (B.5) and (B.6) become

∂y S+(y) +
ν+

2
(S−(y) − S+(y)) = −

(
1

v+
+

ν+

4α

)
π+(y) −

ν+

4α
π−(y), (B.8)

∂y S−(y) +
ν−

2
(S−(y) − S+(y)) =

(
1

v−

+
ν−

4α

)
π−(y) +

ν−

4α
π+(y). (B.9)

Performing the transformation S =
1
2(S− + S+) and D =

1
2(S−S+) and exploiting the fact that

π±(y) = 5 in region I,

∂y D(y) − ϑ−D(y) =
5

2
ρ1, (B.10)

∂y S(y) + ϑ+ D(y) =
5

2
ρ2, (B.11)

where

ρ1 =
1

v−

+
1

v+
+

ϑ+

α
, ρ2 =

1

v−

−
1

v+
−

ϑ−

α
. (B.12)

The solution to (B.10) is

D(y) =
5

2ϑ−

ρ1(eϑ− y
− 1), (B.13)

where we have imposed the reflecting boundary condition at x = 0. The solution to (B.11) is
then

S(y) =
5

2

(
[ρ2 +

ϑ+

ϑ−

ρ1]y −
ϑ+

ϑ2
−

ρ1eϑ− y

)
+ B̂I. (B.14)

Equations (B.8) and (B.9) also hold in region III with π±(y) given by equation (A.12). We
find that

D(y) = ÂIIIeϑ− y + HD(y) (B.15)

with

HD(y) =
AIII

2

((
ν+

v+
+

ν−

v−

+
ϑ2

+

α

)
yeϑ− y +

ν+

ϑ−

ρ1eϑ−L

)
, (B.16)

and

S(y) = −
ϑ+

ϑ−

ÂIIIeϑ− y + HS(y) + B̂III (B.17)
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with

HS(y) =
AIII

2

((
ν+

ϑ−v−

−
ν−

ϑ−v−

−
ϑ+

α

)
eϑ− y

− ν+ρ2 yeϑ−L

)
− ϑ+

∫ y

HD(y′) dy′. (B.18)

The absorbing boundary condition at y = L requires D(L) = S(L) so that we can eliminate the
constant B̂III and

S(y) =
ÂIII

ϑ−

(ν+eϑ−L
− ϑ+eϑ− y) + HD(L) + HS(y) − HS(L). (B.19)

In region II, we have u(y) = σ and w(y) = δ so that equations (B.5) and (B.6) can be
written in the matrix form(

∂y S+(y)

∂y S−(y)

)
+ N

(
S+(y)

S−(y)

)
= F(y) (B.20)

with N defined in equation (A.10),

F(y) =

−
π+(y)

v+
−

ν+σ

α

[
σ(π+(y) + π−(y)) + δ

]
π−(y)

v−

+
ν−σ

α

[
σ(π+(y) + π−(y)) + δ

]
 , (B.21)

and π±(y) are given by equation (A.15). Using variation of constants, we obtain the solution(
S+(y)

S−(y)

)
= 8(y)

(
Â I I

B̂ I I

)
+ 8(y)

∫
8−1(s)F(s) ds, (B.22)

where the fundamental matrix 8(y) is defined in equation (A.16). It follows that

D(y) =
ÂII

2
(1 − ξ1)e−λ1 y +

B̂II

2
(1 − ξ2)e−λ2 y + g−(y), (B.23)

S(y) =
ÂII

2
(1 + ξ1)e−λ1 y +

B̂II

2
(1 + ξ2)e−λ2 y + g+(y), (B.24)

where

g∓(y) = ±

(
κ1,1φ2,2

21
+ κ1,2φ1,2 y

)
eλ1(X−a−y)

∓

(
κ2,2φ1,1

21
− κ2,1φ2,1 y

)
eλ2(X−a−y)

±(ω1(ξ2 ∓ 1) − ω2(ξ1 ∓ 1)) (B.25)

and

κi, j =
ϑ−

(ξ1 − ξ2)�

(
σ 2

α
(ξi + 1)(ξ jν− + ν+) +

ξi

v+
+

ξ j

v−

)
, (B.26)
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ωi =
λi ((σ/α)(ξiν− + ν+) + ξi/v− + 1/v+)

2(ξ1 − ξ2)ν+ν−(1 − 2σ)
, (B.27)

φi, j = (ξi ∓ 1)(ξ j − 1). (B.28)

Finally, the four unknown constants B̂I, ÂII, B̂II, ÂIII can be calculated by imposing
continuity of S(y) and D(y) at y = X − a and X + a. After some lengthy algebra, we find that
the conditional MFPT is

T =
S(0)

5
= −

1

2

ϑ+

ϑ2
−

ρ1 +
B̂ I

5
. (B.29)

with

B̂I = −
5

2

([
ρ2 +

ϑ+

ϑ−

ρ1

]
(X − a) −

ϑ+

ϑ2
−

ρ1eϑ−(X−a)

)
+ τ(ξ1 − 1)(ξ2 − 1)(D(X + a) − g−(X + a))

−η2,1(S(X + a) − g+(X + a)) + g+(X − a). (B.30)

Here D(X + a) and S(X + a) are determined from equations (B.15) and (B.17) with

ÂIII = ϑ−

[
π1

2
ρ1(eϑ−(X−a)

− 1) − g−(X − a) + η1,2(g−(X + a) − HD(X + a))

+τ(ξ1 − 1)(ξ2 − 1){g+(X + a) − HD(L) − HS(X + a) + HS(L)}

]
×

[
(ϑ−η1,2 − ϑ+τ(ξ1 − 1)(ξ2 − 1))eϑ−(X+a) + ν+τ(ξ1 − 1)(ξ2 − 1)eϑ−L

]−1
(B.31)

and

ηi, j =
(ξi − 1)(ξ j + 1)e2λ1a

− (ξ j − 1)(ξi + 1)e2λ2a

2(ξ1 − ξ2)
, (B.32)

τ =
e2λ1a

− e2λ2a

2(ξ1 − ξ2)
. (B.33)
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