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Recent experimental and computational evidence suggests that several
dynamical properties may characterize the operating point of functioning
neural networks: critical branching, neutral stability, and production of a
wide range of firing patterns. We seek the simplest setting in which these
properties emerge, clarifying their origin and relationship in random,
feedforward networks of McCullochs-Pitts neurons. Two key parameters
are the thresholds at which neurons fire spikes and the overall level of
feedforward connectivity. When neurons have low thresholds, we show
that there is always a connectivity for which the properties in question
all occur, that is, these networks preserve overall firing rates from layer
to layer and produce broad distributions of activity in each layer. This
fails to occur, however, when neurons have high thresholds. A key tool in
explaining this difference is the eigenstructure of the resulting mean-field
Markov chain, as this reveals which activity modes will be preserved from
layer to layer. We extend our analysis from purely excitatory networks
to more complex models that include inhibition and local noise, and
find that both of these features extend the parameter ranges over which
networks produce the properties of interest.

1 Introduction

Many basic questions remain unresolved in understanding how simple
features of network connectivity determine the statistical structure of their
outputs. In particular, as we vary the average connectivity strength between
model neurons, what kinds of transitions occur in model dynamics? The
first dynamical property we might study at a transition is neutral stability
of trajectories. Intuitively, it appears that neutral stability could favor signal
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transmission, because it suggests that input patterns (and their noisy
perturbations) will retain their original separation in state space, neither
diverging nor converging toward some fixed attractor (Bertschinger &
Natschlager, 2004; Legenstein & Maass, 2007). The second, allied property
that could occur as networks transition from weak to strong connectivity
is the production of a wide range of output states—that is, a mix of firing
patterns that induce a broad distribution with high response entropy. If
responses are tallied by total network output, this could require statisti-
cal correlations of all orders (Amari, Nakahara, Wu, & Sakai, 2003); thus,
higher-order correlations are another statistical property of interest at net-
work transitions. Finally, an assay that involves all of these properties is the
decodability of input patterns based on network outputs.

But how are all of these properties related? Do networks ever exhibit all
of them simultaneously, and if so, when? Developing the complete picture
is a formidable challenge; in this letter, we progress by answering these
questions in what is probably the most tractable class of systems in which
they can be studied: noisy, feedforward networks of thresholding neurons
(Nowotny and Huerta, 2003).

Several prior studies of signal propagation in feedforward networks in-
form our approach. These suggest that a wide range of network responses
fails to occur in broad parameter regimes: rather, the only outputs pro-
duced are all cells firing or being silent simultaneously. This is due to the
buildup of correlations among neural activity at each layer, even when in-
puts drive the cells to fire independently in the first layer. In particular, for
iteratively constructed in vitro feedforward networks, neurons displayed
a marked tendency to synchronize (Reyes, 2003). Subsequent simulations
and analyses with thresholding neurons have corroborated these findings,
arguing that any initial spike count distribution becomes strongly bimodal
after a few layers (Nowotny & Huerta, 2003). Integrate-and-fire neurons
similarly fail to transmit activity without decaying or saturating to a point
independent of the input rate but are able to support stable propagation of
highly synchronized volleys of spikes even in the presence of asynchronous
background noise with low firing rates (Diesmann, Gewaltig, & Aertsen,
1999; Kumar, Rotter, & Aertsen, 2008; Litvak, Sompolinsky, Segev, & Abeles,
2003; Tetzlaff, Geisel, & Diesmann, 2002). These cascades of coherent activ-
ity, called synfire chains, have been observed experimentally and are hy-
pothesized to encode stimuli through precise spatiotemporal spike timing
(Abeles, Bergman, Margalit, & Vaadia, 1993). However, in embedded feed-
forward networks, even synchronous propagation dies out if background
network activity is sufficiently synchronous or has a high firing rate (Kumar
et al., 2008). If synapses are strengthened and connectivity sparse, rate prop-
agation but not synfire activity can be sustained (Vogels & Abbott, 2005).
Moreover, different studies demonstrate a critical regime with broadly dis-
tributed output patterns and significant higher-order interactions (Beggs &
Plenz, 2003; Yu et al., 2011).
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As we will further explore here, the key difference among these studies
is the threshold number of excitatory inputs that each cell must receive
in order to fire (Kumar, Rotter, & Aertsen, 2010). This threshold is low
in the work of Beggs and Plenz (2003) (a single spike) and Vogels and
Abbott (2005) but much higher for Nowotny and Huerta (2003), Reyes
(2003), and Litvak et al. (2003). As reviewed in Kumar et al. (2010), densely
connected feedforward networks with synapses that are weak relative to
threshold tend to produce more synchrony than their sparsely connected
counterparts due to the neurons having more shared inputs (Rosenbaum,
Trousdale, & Josic, 2010). Thus, as synaptic inputs are weak compared to
spike thresholds in many biological settings, it may appear that synchrony
is inevitable. However, noise local to each neuron decreases synchrony
and can do so without damaging the capacity to transmit signals, at least
those defined by firing rates within each network layer (van Rossum, Tur-
rigiano, & Nelson, 2002, but see also Nowotny & Huerta, 2003; Reyes,
2003).

Here, we undertake to unify these results through a common mathemat-
ical framework and extend them by treating multiple assays of network
outputs. In particular, we show when and how neutral stability, broad
response distributions, higher-order correlations, and the transmission of
firing rate signals coexist and when these properties fail to coexist. For any
level of spike threshold, we find that there is always an intermediate value
of network connectivity characterized by neutral stability and higher-order
correlations. High response entropy and transmission of firing rates, how-
ever, occur only at this point when neurons have low thresholds or added
noise.

The narrative of the letter proceeds as follows. Section 2 gives the
setup of the model. In section 3, we introduce the branching ratio, de-
scribing how layer-averaged activity—that is, firing rates—is propagated
from layer to layer. Next, in section 4, we develop tools that give a more
refined view of how activity is transmitted. Specifically, we show that
the model can be reduced to a mean-field Markov chain and that the
eigenstructure of the corresponding transition matrix reveals intermedi-
ate parameter values for which the networks support persistent, broadly
distributed responses. In section 5, we study the resulting responses in
terms of higher-order correlations and response entropy, showing that
both are maximized at this intermediate parameter regime. Section 6 in-
troduces a combined metric, which assesses the capacity of networks to
preserve rates from one layer to the next while maintaining broadly dis-
tributed responses. In sections 7 and 8, we apply the same analyses to
excitatory-inhibitory networks and to those with localized background
noise, and we see that both factors increase parameter ranges over which
the propagation of broad activity distributions with preserved firing rates
occurs.
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Figure 1: Average rate transmission in feedforward networks. (A) Schematic of
a feedforward network. Filled circles indicate spikes, hollow circles quiescence
(i.e., absence of firing). In this example, N = 4, L = 5, C = 2, p = 0.5, and θ = 1.
(B, C) Branching ratio σ as a function of connectivity strength γ for N = 20,
(B) θ = 1, and (C) θ = 7. Each data point is the branching ratio of a network
of a particular connectivity structure. (D–F) Simulated propagation of firing
rates shown for three sample networks with θ = 1 and C = 3, p = 0.25, 0.43,
0.85, respectively. These parameters are also indicated by the markers in panel
B. Noisy, uncorrelated input is injected into the first layer, and the resulting
firing rates are averaged over 1000 trials plotted over multiple layers. Error bars
indicate standard deviation scaled by a factor of 1/10 to facilitate comparison.
Vertical gray bars are shown at L = 5 to emphasize that henceforth we will
primarily be concerned with shallow layers. (D) In subcritical networks (σ < 1),
activity tends to die out. (F) In supercritical (σ > 1) networks, activity saturates.
(E) Critical networks (σ ≈ 1) reveal the greatest fidelity in propagating Poisson
input rates through layers; however, while this picture is qualitatively true for
networks of low-threshold neurons, when θ reaches higher values, networks
tend to transmit only high or low rates (see section 6).

2 Model of Stochastic Feedforward Networks

2.1 Network. Following Nowotny and Huerta (2003), we examine a
network of binary (McCulloch & Pitts, 1943) neurons in a feedforward
architecture with probabilistic synapses and input (see Figure 1A for a
schematic). Each layer consists of N identical neurons. In general, we will
illustrate N = 20; results hold for larger N as well, as we summarize in
section 9. The neurons are thresholding units that spike if they receive at
least θ synaptic inputs from neurons in the previous layer and are otherwise
quiescent (i.e., silent). The connectivity structure between layers is random
and spatially homogenous; each neuron upstream is connected to C postsy-
naptic neurons chosen uniformly from the downstream layer. Connections
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between neurons have a fixed probability p of synaptic transmission. In this
letter, we are interested in signal propagation through a fixed number of
layers, as we expect biological feedforward networks to be shallow (we will
in general take L = 5). The number of layers through which a rate signal can
be transmitted in similar feedforward networks before losing information
has been addressed by Toyoizumi (2012), Lim and Goldman (2012), and
Ganguli, Huh, and Sompolinsky (2008).

We concentrate solely on networks with a feedforward connectivity
structure. However, these networks are equivalent to synchronously up-
dated, discrete-time systems with random recurrent connections (including
“autapse” connections to and from cells to themselves), under the anneal-
ing approximation (Bertschinger & Natschlager, 2004). Thus, to the extent
that these assumptions hold, the results of this letter may also be applied to
the evaluation of persistent activity in recurrent networks.

2.2 Stimuli. The networks are driven by a stimulus to elicit an average
spike count of S ∈ {0, . . . N} firing neurons in the first layer at that time step.
Unless otherwise specified, this stochastic input is injected independently
so that each neuron in the first layer responds as an independent (0,1)
Bernoulli random variable with biased probability S/N of spiking (taking
value 1). This results in a binomially distributed spike count in the first
layer.

2.3 Propagation. The state of the Lth layer is denoted by xL, an N-vector
of zeros and ones, and the connectivity matrix between layers L and L + 1
by EL. (Henceforth we will use E to refer to the N × N × L − 1 connectivity
tensor of the entire network.) Since the connections between neurons are
stochastic, each synapse in a given trial fails with probability 1 − p. It will
be useful to call the realization of EL according to the probability of synaptic
transmission the “effective” connectivity matrix ÊL, keeping in mind that
different trials will yield different ÊL yet EL will remain fixed. The state at
layer L of a realization of a given network can now be expressed as

xL+1 = �
(
ÊLxL − θ

)
, (2.1)

where � is the elementwise Heaviside step function. The key parameter in
this system is the connectivity strength γ = Cp.

2.4 Limitations and Simplifications. We note several important facts
about the model setup and analysis. First, this model has no time explicit
in its dynamics; each trial can be thought of as a wave of activity evolving
from a particular initialization in the first layer and is independent of the
next. Because of this, the phenomenon of synchrony in the usual temporal
sense is not applicable. The corresponding concept of synchrony is when
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neurons in a layer tend to fire, or be quiescent, together in a given trial;
this is what we will mean in the remainder of this letter when we refer to
synchrony or synchronous coding. Second, because of the assumption of
spatial homogeneity in both inputs and network architecture, this model is
not well suited to study spatial modes of activity.

Third, and most important, our analysis henceforth focuses on the total
activity within each layer. That is, rather than quantify network responses
in the full space of 2N firing patterns that can occur in each layer, we restrict
our description to the number of cells that fire in that layer: the N + 1
different values of the (layer-averaged) firing rate.

3 The Branching Ratio

To understand the qualitative dynamics and average firing rate transmis-
sion through multiple layers, we borrow a useful tool from the criticality
literature (Beggs & Plenz, 2003). A critical transition regime is often exper-
imentally defined by the branching ratio σ , the ratio between the number
of cells in a population firing at a particular time step and the number of
cells firing at the previous time step, averaged over time. To avoid decay or
growth of activity, the system must produce firing rate dynamics that are
neutrally stable, satisfying σ ≈ 1; such networks are labeled critical.

In our feedforward framework, the relevant measurement is the branch-
ing ratio averaged over trials and layers rather than time. To quantify the
general capacity of a particular network with fixed connectivity structure
E to maintain activity in a one-to-one manner, we will also average this
layerwise branching ratio over repeated trials with the same network, each
with different stimulus rates as well as different (random) inputs x1 to the
first layer. The result is

σ =
〈〈〈

SL

SL−1

〉
L

〉
Ê,x1

〉
S

, (3.1)

where SL is the number of neurons spiking in layer L on a given trial.
Throughout this letter, when we refer to the branching ratio, we mean σ .

We conducted Monte Carlo simulations to compute how this quantity
changes with connectivity level γ . In detail, at a fixed γ , we first chose
one example of a network structure E for every C ≥ �γ �, the constrained
value ensuring that p < 1. For each E, we then input a deterministic rate of
exactly S = θ + 1, . . . , N spiking neurons in the first layer with 100 random
instantiations of x1, evolve the network, and measure the ratios SL/SL−1
for each layer until either the neural activity dies out or the last layer is
reached. Finally, σ is computed as the average over the 100 random network
realizations and instantiations at the first layer, and subsequently over all
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stimulus levels greater than θ spiking neurons per layer (as any input less
than that is guaranteed to be extinguished at the next layer).

Figures 1B and 1C show results over five layers. Each of the tight scatter
of points at each value of connectivity γ is the branching ratio of a particular
network with that value of connectivity and a specific architecture E. (The
fact that there is very little variation at a given level γ supports our choice
of this combined parameter as the principal one in our study.1) Note that
as we sweep connectivity γ from small to large values, we pass through
a critical value (which we shall denote by γobs) at which σ ≈ 1. Thus, we
find that the transition (critical) branching parameter is consistently found
in our networks at some intermediate connectivity level.

We next illustrate the implications of the branching parameter for prop-
agation of firing rates across network layers. For many different networks,
we compute rate trajectories averaged over 1000 trials for input rates rang-
ing from 0 to N = 20 neurons firing in the first layer. In each trial, S and E are
fixed, yet x1 and Ê change probabilistically. The evolution of the firing rate
over 20 layers is shown for three representative networks with threshold
θ = 1 in Figures 1D to 1F. In subcritical networks (see Figure 1D), neural
activity dies after a few layers regardless of stimulus. The supercritical,
σ > 1, network (see Figure 1F) inflates rates to nearly maximal values, and
as in the subcritical case, it is difficult to distinguish between two inputs
based on output rate alone. In critical networks, however, rate trajectories
remain separated at each layer (see Figure 1E). This result is in agreement
with other findings in the literature regarding information transmission of
critical networks. Overall, these simulations confirm the expected picture
that the average firing rate statistic is best propagated through networks
when σ ≈ 1.

Beyond preservation of firing rates from one layer to the next, we are
interested in networks that can produce a broad distribution of responses
and avoid the limitations of strong synchrony. To assess this, in the next sec-
tion we introduce a tool to describe propagation of firing rate distributions
across layers via a mean-field approximation.

4 Mean-Field Markov Chain Model and Spectral Analysis

Since the state of each layer depends solely on the state of the previous layer
and the synaptic connections between layers, our feedforward networks
are Markov chains (Nowotny & Huerta, 2003). Furthermore, as we aim

1In the following sections we reduce the two parameters C and p dictating network
connectivity to the single connectivity parameter γ ; this is supported by the observation
that variation in σ for fixed γ but varying values of C and p is has a negligible impact on
the branching ratio, as shown by the tight scatter of points at each γ in Figures 1B and
1C. Moreover, in the mean-field theory we develop, it is also the case that γ , rather than
C and p separately, enters.
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to describe only the propagation of layer-averaged firing rates rather than
particular firing patterns (or binary words), our Markov chain has N + 1
states. We proceed to derive a mean-field description of the Markov chain
for each connectivity level γ by averaging over possible connection ma-
trices, yielding a discrete-time dynamical system describing the evolution
of the spike counts or firing rate from layer to layer. To do this, we make
two assumptions: conditional independence and permutation symmetry.
The former assumes that neurons in the downstream layer are condition-
ally independent given the number of neurons firing in the previous layer.
This condition effectively ignores correlations that would arise due to in-
homogeneous connectivity architectures (e.g., divergent motifs). However,
conditional independence neither implies nor is implied by unconditional
independence; therefore, activity between neurons may still be correlated
ultimately.

The second assumption states that neurons within a layer are permuta-
tion symmetric, meaning that each group of k neurons in a layer has the
same statistical properties. Both approximations (and therefore the mean-
field model) are exact in the special case of all-to-all connectivity (C = N), for
which Nowotny and Huerta (2003) developed the same description. When
C < N, the mean-field and true models differ; the latter would be obtained
by first finding the spike count distributions for fixed connectivity and then
averaging over all E. However, for the excitatory networks considered in
the main part of the letter (sections 2–6), we have verified numerically that
the mean-field model is a good predictor of the true spike count dynamics
except in the limit of large p and small C (see appendix C).

The mean-field transition matrix A—the matrix whose (n, m)th element
is the probability that there are SL = m neurons spiking at a layer given
SL−1 = n spiking in the previous layer—is given by

Anm =
(

N
m

)
qm

n (1 − qn)N−m (4.1)

if n ≥ θ . Here, qn is the probability that a downstream neuron will fire
assuming n spiking neurons in the previous layer:

qn =
n∑

k=θ

(
n
k

) ( γ

N

)k (
1 − γ

N

)n−k
. (4.2)

If n < θ , then qn = 0 and Anm = 0. In principle, A could be derived from the
transition matrix of the original Markov chain (see appendix B for details).

When we use the transition matrix, the spike count probability distribu-
tion PL at layer L (the vector of length N + 1 whose jth component is the
probability that j neurons are firing in layer L) is simply given by matrix-
vector multiplication: PL = PL−1A.
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The long-term behavior of these feedforward networks can be predicted
using the eigenvalues and eigenvectors of the mean-field transition matrix.
To illustrate this, assume A is diagonalizable, so that the input probability
distribution Pinput = P1 can be decomposed into a linear combination of the
eigenvectors of A:

Pinput = α0v0 + α1v1 + · · · + αNvN.

The spike count probability distribution at the Lth layer is simply PL =
PinputA

L:

PL = α0λ
Lv0 + α1λ

L
1v1 + · · · + αNλL

NvN.

The persistence of different eigenmodes through layers is determined by the
size of their corresponding eigenvalues.2 If λi � 1, then after a few layers,
the contribution of the ith eigenmode will decay to become negligible. On
the other hand, eigenmodes whose eigenvalues are near 1 will survive
through many layers.

We analyze the eigenstructure of A through a combination of mathemat-
ical analysis and computational argument. First, it can be proven that A
has one unique stationary state corresponding to all neurons being quies-
cent: voff = (1, 0, . . . , 0) (see proposition 1 in appendix D). The existence of
a stable quiescent state is expected, as the nonzero probability of synaptic
failure will eventually attenuate any signal. Second, if A is well behaved
in the sense that its eigenvectors have limits as γ → N (an assumption
that is supported by numerics; see Figures 2A and 2C), then the second
largest eigenvalue λ∗ of A converges to 1 as γ → N, indicating the emer-
gence of an additional dimension of persistent activity. This too is intuitive,
as a maximal connectivity strength should result in a stationary state in
which all neurons fire at each layer. The catch, however, is that the corre-
sponding eigenvector v∗ converges to a vector in the subspace of bimodal
or synchronous distributions—that is, to the span of voff and von where
von = (0, . . . , 0, 1) corresponds to all neurons firing (see proposition 2 in
appendix D). All other eigenmodes must converge to 0 as γ → N. So de-
spite the emergence of this extra persistent dimension, activity becomes
synchronous as connectivity strength increases. Ideally, what we want is

2In Markov chains with very nonnormal transition matrices, transient activity can
persist past that expected solely by the spectrum; these matrices can be analyzed through
their prominent pseudospectral sets, which are the eigenvalues of small perturbations
of the matrix. When we pursued this type of analysis of A, we did not find significant
pseudospectral sets that described the persistent activity of our networks beyond expec-
tations from the spectral analysis (results not shown; see Trefethen & Embree, 2005, for
more details on pseudospectral analysis).
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Figure 2: Spectral analysis of the mean transition matrix for networks with
(A, B) θ = 1 and (C, D) θ = 7. (A, C) The second largest eigenvalue λ∗ (solid line)
effectively reaches to 1 while the angle between v∗ and the vector corresponding
to full synchrony von (dashed line, plotted in radians) maintains significant value
for a range of γ , indicating that the second eigenmode is both persistent and
far from bimodal. This is also illustrated by the insets, which show typical
histograms on the line quasi-attractor either at γeig (circle markers on dashed
line in panels A and C and on the second dominant eigenvalue in panels B and
D) or when γ is too high to support broadly distributed eigenmodes, resulting
in bimodal distributions (triangular marker in panels A and B). (B, D) Also at
the emergence of the line quasi-attractor (circle markers), all eigenvalues are
near maximal compared to their values over the entire connectivity range.

for λ∗ to be practically 1 yet for the span of v∗ and voff to be far from the
plane of bimodal distributions.

Intriguingly, numerical calculations reveal that this does occur for an
intermediate level of connectivity γeig (see Figures 2A and 2C), implying
the emergence of a plane spanned by the two principal eigenmodes v∗ and
voff that, due to increased persistence, effectively acts as an attractor in suffi-
ciently shallow layers: because of this, we will call this plane quasi-attracting.
Once the vectors are normalized to represent probability distributions, this
means that at γeig, there exists a line quasi-attractor that is far from the
space of bimodal distributions, and hence that the network can support
broadly distributed, incompletely synchronized firing states. At this same
intermediate γeig, we also observe significant values of all eigenmodes (see
Figures 2B and 2D), showing further persistent activity contributed by other
eigenmodes, at least for the initial network layers.
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Figure 3: Geometrical interpretation of spike count propagation for N = 2,
θ = 1. The spike count histogram evolves through layers according to the mean-
field model via iterated matrix multiplication, corresponding to a discrete tra-
jectory in the space of spike count probability distributions. (A) For low connec-
tivity strengths, the input distribution quickly converges to the plane spanned
by the first two eigenmodes (the gray plane shown, although histograms will
be constrained to the line embedded in the plane satisfying

∑
i Pi = 1) as the

network encodes the signal. The distribution then slowly converges to the true
stationary state voff, and the signal decays. In this example, convergence to
quiescence occurs in only a few layers. (B) For high connectivity levels, ac-
tivity persists through the deeper layers, but the line quasi-attractor has ro-
tated closer to the space of bimodal distributions spanned by von and voff. The
ideal network lies between these two figures. See the text for a more detailed
discussion.

We pause to give a geometrical view of the mean-field dynamics de-
scribed above. This is illustrated in Figure 3 for N = 2, although the follow-
ing description holds for arbitrary N. Consider the (N + 1)-dimensional
space of the spike count probability distribution at a layer. Starting with
any input probability vector Pinput, the layer-to-layer mean-field dynamics
of the network can be visualized as iterated mappings of the input vector
Pinput in the space of spike count distributions, constrained to the simplex∑

i |Pi| = 1. In Figure 3, repeated applications of A are enumerated. In the
first couple of iterations, the spike count distribution converges toward the
line quasi-attractor spanned by voff and v∗ as smaller eigenmodes decay.
This may be interpreted as the encoding of the input distribution in the
lower-dimensional quasi-attractor after a few layers. Eventually the system
drifts to the stationary state where all neurons are silent, voff. This of course
represents a final state in which the network has “forgotten” the input. If
γ < γeig, then the convergence to voff happens within a few layers (as in
Figure 3A). When γ > γeig, although activity persists through many layers
as expected, the line quasi-attractor has rotated nearer to the span of von and
voff, so that the persistent activity is nearly synchronous (see Figure 3B). It
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is only when γ ≈ γeig that activity is persistent while resisting synchrony.
In this sense, γeig represents the existence of a persistent mode of activity
characterized by a balance of principal eigenmodes that are broadly dis-
tributed, avoiding firing patterns being limited to synchrony or quiescence.
In fact, as we explore in the following section, γ ≈ γeig also predicts further
interesting statistical features of network responses.

5 Complexity of Network Responses

Next, we study two measures of the statistical complexity of the network
responses over the range of connectivity strengths and threshold levels.
First, we take an information-theoretic approach to the question of higher-
order interactions, which asks: When do neurons fire in a way that cannot
be predicted from their firing rates and pairwise spike correlations alone?
Beyond their basic role in characterizing the degree of coordinated spiking
in networks (Shlens et al., 2006; Schneidman, Berry, Segev, & Bialek, 2006;
Martignon et al., 2000; Staude, Rotter, & Grün, 2010), higher-order statistical
interactions have been shown to be necessary to produce broad distribu-
tions spiking activity (Amari et al., 2003; for recent applications, see Macke,
Opper, & Bethge, 2011; Yu et al., 2011) and to have a significant impact on
the coding of stimuli (Ganmor, Segev, & Schneidman, 2011; Montani et al.,
2009).

To calculate the extent of higher-order moments in the response distri-
butions, we use maximum entropy models (Shlens et al., 2006; Schneidman
et al., 2006; Ohiorhenuan, Mechler, Purpura, Schmid, & Victor, 2010; Yu
et al., 2011; Jaynes, 1957). The pairwise maximum entropy fit of a proba-
bility distribution is defined as the distribution that has maximal entropy
while being constrained to match the first and second moments of the
true distribution. Thus, this fit makes the fewest additional assumptions
on the structure of the probability distribution; any additional structure is
attributed to higher-order moments. For the permutation-symmetric net-
works at hand, the pairwise maximum entropy distribution takes the form
of a one-dimensional discretized gaussian:

PME(n) = 1
Z

exp{λ1n + λ2n2}, (5.1)

where Z is a normalizing factor and λ1, λ2 are the parameters chosen to
match the first two moments. As a measure of the impact that higher-order
correlations have in shaping the response distributions, we follow Shlens
et al. (2006), Schneidman et al. (2006), Ohiorhenuan et al. (2010), and Yu et al.
(2011) and compute the stimulus-averaged Jensen-Shannon (JS) divergence



1780 N. Cayco-Gajic and E. Shea-Brown

between the true distribution and its maximum entropy fit:

DJS(PL, PME
L ) = 1

2

N∑
m=0

PL(m) log2

(
PL(m)

1
2 (PL(m) + PME

L (m))

)

+1
2

N∑
m=0

PME
L (m) log2

(
PME

L (m)

1
2 (PL(m) + PME

L (m)

)
. (5.2)

This quantity assumes values 0 ≤ DJS(PL, PME
L ) ≤ 1; it can be thought of as

a symmetrized version of the Kullback-Leibler divergence.
This comparison of the spike count distribution with the maximum en-

tropy model will describe how well (over all possible networks of that
particular gamma) the first two moments can describe the responses. This
is a complementary view from directly calculating higher-order cumulants
(Staude, Grün, & Rotter, 2010), directly quantifying how distinct the full
distribution is from one with the minimal possible statistical assumptions.
In the special case of fully connected layers (C = N), the mean-field descrip-
tion is exact, and hence this will correspond to the tendency of any group of
k > 2 neurons to fire in the same bin (since the network is homogeneous).
For C < N, this quantity approximates the amount of coincident spiking
averaged over groups of k neurons.

Recall that each neuron in the first layer is independently stimulated so
that their firing is a Bernoulli trial, so no correlations are injected into the
network. All correlations, pairwise and higher order alike, emerge solely
from the network interactions. We computed the JS divergence between
spike count distributions distributions at layer 5 and their pairwise maxi-
mum entropy conditioned on input rate, then average this over all possible
stimuli. Through this assessment, we note significant complexity already by
the fifth layer at γeig (see Figures 4A and 4B, solid line). Beyond γeig, as firing
rates approach maximal values, the JS divergence decreases to zero. This is
because the JS divergence infers the effects of the higher-order moments in
the response distribution beyond that which would be expected from the
first two moments alone, so high firing rates alone do not necessarily imply
large JS divergence (e.g., if neurons are independent with maximal firing
rate, they will fire together frequently but exhibit no correlation).

How can we understand the origin of such statistical complexity? We
next show that they can be predicted from the spectral analysis of the previ-
ous section, without the need for simulation. Figures 4C and 4D plot the JS
divergence between the spike count histograms on the line quasi-attractor
and their pairwise maximum entropy fit. Here, we plot this quantity as a
function of their position along the line, parameterized so that voff is at posi-
tion 0. This can be compared to an average JS divergence of approximately
0.08 (dashed lines; calculated by averaging over 10,000 random sample
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Figure 4: Statistical complexity of network responses for (A, B) θ = 1 and (C, D)
θ = 7. (A, C) Response entropy (dashed gray line) and the stimulus-averaged
JS divergence between the true distribution at layer 5 and the pairwise max-
imum entropy fit (solid black line) plotted as a function of γ . Also shown
are γeig (hollow arrow below panel) and γobs (solid arrow). (A) When θ = 1,
peaks in both curves line up with γeig, as does γobs (arrows offset for visibility).
(B) For higher-threshold networks, γobs does not align with γeig or other assays
(see section 6). (C, D) JS divergence between spike count histograms and their
maximum entropy fits along the line quasi-attractor (solid lines; axis parameter-
izes distributions along the line quasi-attractor starting at voff). Compare with
the divergence averaged over the entire space of histograms (dashed lines).

distributions so that the mean had converged) over the entire space of pos-
sible response histograms. In particular, the eigenvectors at γeig produce
significantly larger statistical complexity than the average. This is because
at this level of connectivity, the response distribution is a mixture of two
distributions: a large component of quiescent neurons corresponding to voff
and a broader component corresponding to the contribution of v∗. As θ

increases, the level of the JS divergence decreases on the line quasi-attractor
as higher thresholds reduce the breadth of v∗.

The second statistical feature of note is the response entropy of the spike
count distribution:

H(P(SL)) =
N∑

n=0

P(SL = n) log2 P(SL = n). (5.3)
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Larger response entropies indicate broader response distributions. The re-
sponse entropy at the fifth layer peaks at γeig, indicating that the emergence
of the line quasi-attractor corresponds to the broadest distribution of activ-
ity across all values of γ (see Figure 4, dashed gray line). However, the peak
response entropy decreases for higher values of θ ; this is the result of the
fact that as θ increases, v∗ produces less broad response distributions due
to the high threshold and hence the silencing of weak inputs, preventing
them from eliciting any firing in the subsequent layer.

In sum, we have shown that at γeig, networks display an emergence of
statistical complexity—through both maximal response entropy and signif-
icant contributions from higher-order moments within responses—directly
because of the contribution of other eigenmodes at that level of connectivity.

6 Combining Neutral Stability and Broad Response Distributions

In order to maintain averaged levels of activity without succumbing to
synchrony, a network must simultaneously satisfy two criteria. First, it
must be able to preserve averaged firing rates from layer to layer without
succumbing to either runaway excitation and maximal firing rates in deeper
layers or to decaying network activity. Second, a network must exhibit a
broad spike count distribution at each layer in order to prevent the buildup
of correlations and synchrony (Kumar et al., 2010; Reyes, 2003; Litvak et al.,
2003). We refer to these properties, taken together, as asynchronous rate
coding.

For which parameter regimes can such asynchronous rate coding occur?
To quantify this, we need an assay that captures how well networks are
able to propagate broad response distributions from one layer to the next.
We base this on the propagation of binomial spike count distributions, as
these correspond to fully independent activity in each layer. Specifically, we
define the spike count JS divergence D to be the JS divergence (see equation
5.2) between the binomial input distribution P1 and the Lth layer spike
count distribution PL averaged over all stimuli S:

D(γ , θ ) = 1
N + 1

N∑
n=0

DJS(P(SL|S = n), P(S1|S = n). (6.1)

Networks will exhibit good performance, measured by low values D, when
they maintain the broad (independent) spike count distribution and the
averaged firing rate that occurs in the first layer.

Plots of the spike count JS divergence over γ are shown in Figure 5 for
increasing values of the spike threshold θ . For each fixed θ , there is an
optimal, intermediate value of γ at which networks are best able to satisfy
both of our criteria. However, as the threshold level increases, the best value
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Figure 5: Spike count JS divergence plotted as a function of γ for increasing
θ . Optimal performance for each threshold (the minimum value of the curve)
occurs near γeig.

of the spike count JS divergence also increases, showing that high-threshold
networks fail to produce asynchronous rate coding.

This failure follows from the requirements of neutral dynamics and broad
response distributions described in previous sections. First, from section 3,
γobs captures the first criterion of complex signal coding outlined above;
that is, networks demonstrate neutral stability and average one-to-one rate
transmission when they average a branching ratio of σ ≈ 1. On the other
hand, section 4 shows that γeig reflects when the network supports persis-
tent, broad response distributions, providing an assay of the second cri-
terion. Complex signal propagation can therefore occur in these systems
only when γobs ≈ γeig. Comparing Figure 2 with the previous Monte Carlo
simulations in Figures 1B and 1C reveals that both criteria can be simulta-
neously satisfied when few inputs are required to cause a spike, but a gap
between these required values of connectivity γ appears with increasing θ .
To be precise, for N = 20, θ = 1, Monte Carlo simulations and spectral anal-
ysis both yield γobs ≈ γeig ≈ 1.3. When θ = 7, however, simulations show
γobs ≈ 13.75 yet γeig ≈ 10.5. As shown through the eigenstructure, at γobs,
only bimodal activity is supported after a few layers in high-thresholding
networks. In fact, because of the inevitable synchrony in deep layers, opti-
mal performance under the JS divergence tends to fall nearer to γeig than to
γobs. Networks of high-threshold neurons are therefore unable to simulta-
neously satisfy both requirements of complex signal propagation outlined
at the beginning of this section.
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Intuitively, the reason that γobs > γeig is that networks with high-
threshold neurons reject inputs of low firing rate, so that when θ is large,
there is an increased likelihood that connectivity structure and stochasticity
will conspire to silence all activity in the next layer. Geometrically speaking,
as θ increases, so does the nullity of A, resulting in a larger and larger sub-
space that trajectories must avoid lest they risk susceptibility to network
quiescence; in order to reach an average of one-to-one rate transmission, it
is necessary to provide a buffer for the coding subspace from the null-space
by inflating the connectivity into the regime of bimodality.

Also of practical importance is the question of robustness to parameters.
The delicate nature of γeig and γobs constrains networks that produce asyn-
chronous rate coding to finely tuned connectivity strengths; one requires
that the branching ratio lie at a critical value σ ≈ 1, while the other relies
on a precise balance between persistent yet broadly supported eigenmodes.
This sensitivity is reflected in the sharp troughs in the JS divergence (see
Figure 5); for even larger N, these troughs become even sharper, and ro-
bustness is a more important goal to obtain. As we will see in the next
section, however, this sensitivity can be mitigated by adding an inhibitory
population to each layer.

To summarize results thus far, we evaluate networks on two criteria:
σ ≈ 1 and broad response distributions. Low-threshold networks can al-
ways satisfy broad response distributions and maintain average rate trans-
mission at the same γ . High-threshold networks are able to somewhat
support broad distributions, although the preserved aspects of network
responses and their lower values of response entropy indicate less broad
distributions as compared to their low-threshold counterparts. They also
can satisfy σ ≈ 1; however, this is due to averaging: because of the increas-
ing nullity of the mean transition matrix, these networks cannot propagate
weak input stimuli, so they must overcompensate by inflating γ . Because
of this, no high-threshold network of a fixed γ can simultaneously sat-
isfy both criteria, and hence they cannot propagate rates asynchronously
through layers. This appears to be a significant limitation for high-threshold
networks—and, importantly, for many biological neural networks in which
many inputs are required to elicit a spike. In the following sections, we in-
corporate additional biophysical features, inhibition and noise, and study
whether this provides a resolution so that high-threshold networks can
support persistent, broadly distributed activity.

7 Excitatory-Inhibitory Networks Display Increased Robustness

How can asynchronous rate propagation emerge in high-threshold net-
works? Intuitively, we might expect an added inhibitory population to
prevent runaway excitation and saturation of firing rates to high values,
thus preventing synchrony. To test this, we added an inhibitory population
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of NI neurons to each layer of NE = N − NI excitatory neurons and fur-
ther impose NE − NI > θ (otherwise no activity could be transmitted due
to the homogeneity in network connectivity—even if only the excitatory
population is active in layer L, the random connectivity imposed will cause
the same proportion of the excitatory and inhibitory populations in layer
L + 1 to fire). Network parameters are assumed to be homogeneous among
the inhibitory and excitatory populations. Because of this assumption, it is
straightforward to calculate the new four-dimensional mean-field transition
matrix Ain:

P
(
SE

L = mE, SI
L = mI|SE

l−1 = nE, SI
l−1 = nI

)
=

(
NE

mE

)
q

mE
nE ,nI

(1 − qnE ,nI
)NE−mE ×

(
NI

mI

)
q

mI
nE ,nI

(1 − qnE ,nI
)NI−mI , (7.1)

where Si
L is the number of cells spiking in the excitatory (i = E) or inhibitory

(i = I) population at the Lth layer and qnE ,nI
is the probability that a down-

stream neuron spikes given nE spiking excitatory neurons and nI spiking
inhibitory neurons in the upstream layer:

qnE ,nI
=
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(
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)(
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)(
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(
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The binomial input distributions now take the following form:

P(SE
1 = mE, SI

1 = mI|S = n)

=
(

NE

mE

)(
n
N

)mE
(

1 − n
N

)NE−mE

×
(
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mI

)(
n
N

)mI
(

1 − n
N

)NI−mI

.

(7.3)

The expression for the transition matrix for the excitatory-inhibitory
networks has a similar form to that of the purely excitatory networks,
so the eigenstructure of Ain (see equation 7.1) is similar to that of A (see
equation 4.1): it has a unique stationary state corresponding to all neurons
being quiescent, and as γ → N, the second largest eigenvalue converges
to 1 and its eigenvector corresponds to bimodality (see proposition 3 in
appendix D). There also is an intermediate state of connectivity at which
λ∗ ≈ 1 and v∗ is far from bimodal (see Figures 6A and 6B). Here we consider
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Figure 6: Excitatory-inhibitory networks display increased robustness, NE = 16
and NI = 4. (A) The second largest eigenvalue λ∗ and the angle between v∗ and
von (dashed line) overlap over a larger parameter space, indicating robustness
at γeig. (B) Similarly, all eigenvalues A have broader peaks. The inset shows a
typical broadly distributed histogram at γeig (indicated by the marker in panels
A and B). (C) The spike count JS divergence has a wider minimum for all
values of θ , showing that inhbition also allows more robust asynchronous rate
propagation.

θ = 7, as well as NE = 16, NI = 4 to simulate about 20% inhibition, as typi-
cally used in, for example, cortical modeling (Braitenberg & Schüz, 1998).3

This yields γeig ≈ 16.9. However, according to Monte Carlo simulations, the
branching ratio is always less than 1 for all γ < N. Firing rates thus fail to be
maintained in this network, as reflected in the spike count JS divergence in
Figure 6C. The reason is that Ain is structurally similar to A: as in the purely
excitatory networks, the high threshold still rejects weak inputs and sends
them to the stationary state of quiescence, voff. This is in agreement with
Reyes (2003), who found that adding a homogeneous inhibitory population
to each layer does not help networks avoid synchrony.

Inhibition does, however, increase the robustness of JS divergence to per-
turbations in connectivity strength γ . Specifically, the troughs of minimal

3We emphasize that the results in this section are not particular to these specific choices
of NI and NE. As long as NE − NI > θ , the intermediate γeig producing broad, persistent
distributions will continue to exist. Other results regarding robustness and limitations on
asynchronous rate propagation for high θ also continue to hold.
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JS divergence widen compared to those of purely excitatory networks (see
Figure 6C). This is reflected as well in the eigenstructure: the intermedi-
ate state of persistent, broadly distributed distributions is now stretched to
cover a wider range of γ (see Figures 6A and 6B). This robustness grows
as the size of the inhibitory population is increased so long as NE − NI > θ

(results not shown). Intuition for this effect can be obtained by comparing
to the purely excitatory case for large N. On average, each neuron in this
case has synaptic input of size γ . To produce a broad range of responses
and avoid either too many inputs (resulting in maximal firing rates) or too
few (resulting in quiescence), γ must hover near some critical value that de-
pends on parameters. Now suppose we add a population of NI inhibitory
neurons: then each neuron has on average 1/N(NE − NI)γ net synaptic
input. Since NE − NI < N, this slope is shallower than that for purely exci-
tatory networks, so the networks are more robust to chance perturbations
around the critical value of inputs, and hence to connectivity strength.
Simulations agree with this scaling argument (see appendix E, especially
Figure 11).

Increased robustness to connectivity parameters in the presence of inhibi-
tion is interesting as it addresses a major concern regarding the plausibility
of dynamics at critical transition values of connectivity (as discussed in the
previous section). In sum, inhibition may help resolve the need for fine-
tuning by enhancing robustness to fluctuations in network connectivity.

8 Impact of Background Noise

The next attempt to recover asynchronous rate propagation follows from
van Rossum et al. (2002), in which a noisy background current was shown
to enhance the preservation of firing rates in feedforward networks of
integrate-and-fire neurons (see also Nowotny & Huerta, 2003; Reyes, 2003;
Litvak et al., 2003). We inject background noise in the form of inde-
pendent, zero-mean gaussian independent noise current χ to each neu-
ron, χ ∼ N (0, σ 2

χ ). This transforms the Heaviside-like thresholding into a
smoother, sigmoidal operation. The probability that a neuron will spike
given n cells firing in the upstream layer is now

qn =
∫ ∞

−∞
Pr(I > θ − x)Pr(χ = x) dx,

where I is the synaptic input from the upstream layer without the additional
noise component. If x > θ , then the neuron fires with probability 1 because
the noise alone is enough to elicit a spike. If x < θ − n, the neuron can never
fire, as even the addition of all upstream neurons delivering input would
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Figure 7: Impact of noise on input propagation. Surface shows spike count JS
divergence as a function of θ and the standard deviation of noise added to
each neuron, σ

χ
. For each θ , there is a σ

χ
that optimizes asynchronous rate

propagation. For θ < 10, the relationship between θ and optimal σ
χ

is linear.

be insufficient to cross threshold. We can then rewrite qn as
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Nowotny and Huerta (2003) consider a similar expression (equation 7 in
their paper), although both the exact form of their expression, and their
conclusion that it has little effect on the transition matrix, differ from ours.
We denote by Anoisy the transition matrix describing these networks with
added noise, generated by the new qn.

Figure 7 plots the spike count JS divergence (see equation 6.1) as a func-
tion of θ and σχ . The main result is that adding the right amount of noise
produces lower values of JS divergence—and thus more consistent prop-
agation of asynchronous inputs—at larger values of θ . This result agrees
with the findings of van Rossum et al. (2002) (cf. their Figure 2B and see
appendix F for further comparisons with this study). Our result is also
in agreement with Reyes (2003), who finds that adding white noise as a
background current reduces the amount of synchrony present in networks.
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For each of the threshold values θ shown, there is an optimal σχ for
asynchronous rate propagation (i.e., that minimizes the JS divergence). This
amount of noise gives spontaneous firing rates of less than 12%, as measured
by the probability Pr(χ > θ ). For the remainder of this section, we will take
the optimal value of noise for each value of threshold. Figure 8C uses these
values to provide another view of optimized JS divergence, which reveals
the improvement in comparison with noise-free networks (see Figure 5).
Moreover, γobs and γeig do coincide in the noisy case, even for high values
of θ (at about 14.25 in for θ = 7, branching ratio figure not shown).

One might expect the optimal level of noise to decrease for networks with
more layers. Counter to this intuition, however, we find that the optimal
noise level does not depend strongly on the number of layers.4 This is
because the optimal noise levels have the effect of eliciting at each layer the
amount of spontaneous background firing that will precisely balance the
probability that the signal will terminate due to synaptic failure or chance
redundant (i.e., highly convergent) connections. Therefore, optimal noise
levels reduce an inherent asymmetry of the model that allows transitions
from high firing rates to quiescence, but not the other way around.

In contrast to the effects of inhibition, the addition of background noise
does produce substantial changes in the structure of the transition matrix.
For example, comparing Anoisy with A, spontaneous activity is now pos-
sible, as voff is no longer the stationary state. Instead, the stationary state
vSS is now a function of γ . In particular, the noise contributes a nonzero
probability from transitioning from any state to any other state, so the com-
ponents of Anoisy are strictly positive. By the Perron-Frobenius theorem, this
means the system has a unique stationary state vSS whose components are
all strictly positive (so it can never be von or voff). Computationally we find
that the second largest eigenvalue now does not converge to 1 as γ → N;
it does, however, attain a peak value near 1 at an intermediate γeig, and at
this point vSS and voff are also far from bimodal (see Figures 8A and 8B).
Thus despite the differences in eigenstructure between A and Anoisy, the
predominant features that define the existence of a persistent set of broad
firing distributions are still apparent: there is an intermediate connectivity
level γeig at which all eigenvalues are significant, the second largest eigen-
value in particular is close to 1, and both the stationary distribution and the
second eigenmode are far from bimodal.

Finally, to put the role of noise to a more demanding test, we test its
impact on the capacity of networks to discriminate among different input
stimuli. For this, we calculate the rate discriminability by measuring the er-
ror rate given by the maximum likelihood estimator on T trials. Specifically,

4For these parameters, we find an optimal noise level of σ
χ

= 0.3 for 5 layers and
σ

χ
= 0.4 for 20 layers (for θ = 1). For the high-threshold case of θ = 7, we find that the

optimal σ
χ

= 4.6 for both 5- and 20-layer networks.
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Figure 8: Properties of noisy networks at optimal background noise levels.
(A) The second largest eigenvalue λ∗ peaks very close to 1 at an intermediate
γeig. The angles between v∗ and von (dashed line, plotted in radians) and between
vSS and von (dotted line, plotted in radians) have large values at γeig. (B) At this
same value γeig, all eigenmodes have a significant contribution. The inset shows
a typical broadly distributed histogram at γeig (indicated by the marker in panels
A and B). (C) The spike count JS divergence, taking the optimal value of σ

χ
for

each θ . With optimal noise values added, asynchronous rate propagation is
dramatically improved for high-threshold networks.

suppose the network produces output spike counts S1
L, . . . , ST

L under some
fixed input stimulus level S. Since the trials are independent, the maximum
likelihood estimator (MLE) chooses between two stimuli S and S′ by select-
ing the one that is more likely to result in the given data, via the likelihood
ratio:

T∏
j=1

P(Sj
L|S)

P(Sj
L|S′)

.

If this product is greater than 1, the MLE chooses stimulus S; less than 1,
and the MLE chooses stimulus S′. Assuming S and S′ are equally likely a
priori, the error rate is given by
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Figure 9: Rate discriminability for noise-free networks with (A, B) θ = 1 and
(C, D) θ = 7, as well as (E, F) a network with θ = 7 and optimal noise, σ

χ
= 4.2.

(A, C, E) Nearby discriminability (dashed line) and average discriminability
(solid line) for T = 25 trials plotted as a function of connectivity level γ . (A) For
low-threshold networks, rate discriminability is optimal at γeig. (C) For high-
threshold networks, nearby discriminability is best near γeig, but this minimum
is shifted for average discriminability. (E) Adding noise improves rate discrim-
ination in high-threshold networks. (B, D, F) Maximum likelihood error rate
plotted for every possible pair of input stimuli before averaging. The chosen
networks are those that minimize average discriminability, as indicated by the
markers in panels A, C, and E.

where the first expectation is taken over the distribution P(·|S′) and the
second over P(·|S). This produces an (N + 1) × (N + 1) matrix describing
the MLE error rate for distinguishing S from S′. We then average over either
the entries in the entire matrix to give the average discriminability, or we
average the entries in the superdiagonal to give the nearby discriminability,
that is, the discriminability between nearby rates.

Figures 9A and 9C first summarize discriminability in the absence of
noise. Rate discriminability reaches its minimal value at γeig ≈ γobs when
θ = 1; when θ = 7, the minimal discriminability does not exactly coincide
with either γeig or γobs. A glance at the MLE error rates without averaging
reveals the particular type of computation performed in each case: Figures
9B and 9D show the error rates at the values of γ that yield the lowest
average discriminability, as indicated by the markers in Figures 9A and
9C. Low-threshold networks are able to accurately discriminate between
rates over the entire stimulus space, including nearby rates. High-threshold
networks, although able to perfectly distinguish a few rates in a limited
intermediate range, cannot at all distinguish between nearby high rates or
low rates. Rather, these networks are better suited to classifying input rates
into two bins: low and high.
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Interestingly, the added background noise promotes better discriminabil-
ity between rates in high-threshold networks, dropping the minimal level
to values even below that of noise-free, low-threshold networks (see Figure
9E). Moreover, the MLE error rates (see Figure 9F) show a marked improve-
ment in the ability to distinguish between nearby rates at γeig, as revealed
by the tightly banded matrix structure. Not only does noise improve rate
propagation in neurons, it also changes the computation from a coarsely
grained classifier to one with more resolution. This is a specific example of
the more general phenomenon of stochastic resonance (see, e.g., McDonnell
& Abbott, 2009; Longtin, 1993).

9 Discussion

9.1 Summary. In this letter, we study the transitions in feedforward
network dynamics that occur as connectivity strength and firing threshold
are varied. We characterize these transitions via critical branching, neu-
tral stability, higher-order correlations, and broad firing distributions. Af-
ter quantifying critical branching by computing the branching ratio, we
show that neutral stability (persistence of firing patterns from one network
layer to the next), together with statistical properties of the persistent pat-
terns, can be predicted via a spectral analysis of the underlying mean-field
transition matrix. Throughout most of the parameter space, persistent ac-
tivity is restricted to highly bimodal, synchronous responses, as found by
Reyes (2003), Nowotny and Huerta (2003), and Litvak et al. (2003). How-
ever, there are transition connectivity levels that yield persistent, broadly
distributed spike count histograms with higher-order correlations and
large response entropy. For low-threshold networks, this occurs simulta-
neously with (approximately) critical branching, revealing that such net-
works are well suited to transmitting rates without synchronization. On the
other hand, high-threshold networks do not produce both critical branch-
ing and broad response distributions at the same connectivity strength;
when the former is satisfied, these networks tend to produce synchronous
responses.

Interestingly, adding further biologically motivated features increased
the robustness of transitions in high-threshold networks. In particular, sim-
ulations and spectral analysis show that including an inhibitory cell popula-
tion extended the connectivity range that yields asynchronous propagation
of inputs. Adding zero-mean noise to each neuron had a similar effect and
also improved the discriminability of inputs, echoing the findings of van
Rossum et al. (2002) in integrate-and-fire networks.

We conclude that networks with low firing thresholds, or those in
which intrinsic noise elevates firing probabilities, exhibit a set of dynami-
cal and statistical signatures associated with critical transitions in network
activity.
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9.2 Connections with the Criticality Literature. We now discuss links
with the broader literature on criticality, which suggests that the brain may
operate at a state characterized by complex dynamics, significant higher-
order correlations, and enhanced computational properties. This is often
described as operating on the boundary between ordered and irregular (or
chaotic) activity. In particular, such systems can flexibly perform a wide
range of operations on time-dependent inputs when their recurrent net-
works lie near the critical state, which is defined by calculating the expected
neutral separation of trajectories using a mean-field model (Bertschinger &
Natschlager, 2004; Legenstein & Maass, 2007).

Along these lines Beggs and Plenz (2003) motivate a feedforward model
based on array recordings.5 Here, the authors compute the mutual infor-
mation between the 2N possible binary “words” at the first and last layers.
Intriguingly, they numerically show, for the low-threshold case θ = 1, that
the mutual information is maximized for the same parameters at which
critical branching occurs. Our finding in the averaged, mean-field setting
echoes this result. An interesting extension of our work would be to explain
the findings of Beggs and Plenz (2003) using the spectral properties of the
allied layer-to-layer transition matrix between binary words. In principle,
such an approach could predict the occurrence of cascades of such words
over multiple network layers and their role in encoding stimuli.6

9.3 Verifying and Extending the Model. We imposed a number of sim-
plifications in this letter to achieve analytical tractability. The most promi-
nent of these is that our neurons are modeled as simple thresholding units
with no intrinsic properties or time dependence (Nowotny & Huerta, 2003).
An important extension is to consider how results might change if neurons
included a finite integration time. For example, in excitatory-inhibitory
networks, timing of inhibitory spikes will effect action potential gener-
ation (Gabernet, Jadhav, Feldman, Carandini, & Scanziani, 2005). While
this can increase the selectivity of synfire chain propagation (Kremkow,
Perrinet, Masson, & Aertsen, 2010), the effect on rate transmission is un-
known. More generally, if both an integration timescale and a refractory
period are included, the collapsing of C and p into a single parameter,
a key to our mean-field approach, may not be accurate in certain cases.
Specifically, this could occur when C is high and p is low, as interaction

5The authors argue that a feedforward model is appropriate in this context as electrode
sites are rarely active more than once during the cascades of neural activity that they study.

6Such cascades are called neuronal avalanches and have been the focus of a number of
experimental and theoretical studies (Beggs & Plenz, 2003; Kitzbichler, Smith, Christensen,
& Bullmore, 2009; Hahn et al., 2010; Petermann et al., 2009; Hennig, Adams, Willshaw, &
Sernagor, 2009; Mora & Bialek, 2011).
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between different waves of propagation through the chain will allow for
synaptic facilitation, whereas the opposite relationship (low C and high
p) will allow combinations of synaptic facilitation with refractory periods.
It is hard to say for certain how these details will affect our results with-
out direct simulation or analysis. However, our results agree with those in
networks of more realistic neurons (van Rossum et al., 2002; Reyes, 2003;
Rosenbaum et al., 2010; Kumar et al., 2010). We therefore believe that our
findings give a reasonable description of rate propagation in feedforward
networks and provide a good intuition for these systems in a tractable
manner.

Another possible limitation is that the numerical studies presented above
use a fixed value of N = 20 neurons. However, our analytical results on
spectral properties of the transition operator are independent of this choice.
Moreover, we verified that our main qualitative results are preserved, for
example, for the larger value N = 100 (taking θ = 1, 5, 10, 20, 35; data not
shown). In more detail, as with the smaller network, the system at N = 100
remains well described by a mean-field transition matrix (in fact, due to
the larger population size, it is an even better fit). The eigenstructure of
these matrices reveals an intermediate γeig at which the second dominant
eigenmode is both persistent and broadly distributed, and there is signifi-
cant contribution from all eigenvalues as well as maximal response entropy.
For θ = 1, this value overlaps with γobs, but as the threshold increases, the
gap between the two widens; accordingly, the spike count JS divergence
increases. As for the N = 20 case, while inhibition does continue to in-
crease this range, the optimal performance is not improved. The addition of
noise in large networks, however, has similar beneficial effects: an optimal
amount of noise lowers the minimum JS divergence to around 0.32 for high
values of θ . This amount of background noise required generates less than
10% probability of spontaneous firing, similar to that obtained at N = 20.
However, one difference at N = 100 is that the optimal performance under
the JS divergence metric D is lower: when θ = 1, the optimal network attains
at best a score of 0.58, compared to 0.33 for N = 20. Moreover, in the larger
network the “well” in D values near the optimal γ value is even narrower,
requiring a finer tuning of γ . These findings suggest that while our findings
remain qualitatively similar for larger networks, there may be interesting
new phenomena in the continuum limit of large N, an interesting subject
for future study.

On another note, we focused on only a few of the many metrics of signal
propagation and coding that could be applied to the networks at hand. We
note further results on one of these in the appendix F, which van Rossum
et al. (2002) used to measure propagation of firing rates via trial-to-trial
variance of responses in deep layers. This showed similar results to our
measure D of JS divergence between input and output distributions over
intermediate firing rates; the two measures showed distinctions at extreme
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firing rates, assessing the quiescent or saturating patterns that occur there
differently (see appendix F).

We close by noting experimental predictions of our work, as could be
tested directly in in vitro feedforward networks (using the techniques of
Reyes, 2003) or, with the considerations above, could predict dynamics
in recurrent systems as well. First, asynchronous rate propagation should
become possible when the membrane potentials of neurons are biased up-
ward (equivalent to decreasing the spike-generation threshold). Second,
this should also occur when sufficient noise is added local to each cell
(some white noise has already been shown to reduce synchrony in Reyes,
2003), and the optimal amount of white background noise should be inde-
pendent of the number of layers. Finally, adding an inhibitory population
at each layer should increase the robustness of asynchronous propagation
to network connectivity and synaptic strength.

Appendix A: Important Symbols and Their Descriptions

N Number of neurons per layer
L Number of layers
θ Threshold level
C Number of downstream neurons connected to each neuron in

the previous layer
p Probability of synaptic transmission
S Input spike count
γ Connectivity strength γ = Cp
xL Activity pattern in layer L (2N possible values)
EL Connectivity matrix between layers L and L + 1
ÊL Effective connectivity matrix (including instantiations of p)
E N × N × L connectivity tensor of the entire network
σ Branching ratio averaged over E, p, x1, and S
SL Spike count at layer L
γobs Connectivity strength at which σ ≈ 1 is observed via simulation
A (N + 1) × (N + 1) mean-field transition matrix
qm Probability that a neuron will fire given n spiking neurons in the

previous layer
PL (N + 1)-vector whose elements are the probabilities that SL =

0, . . . , N
λ∗ Second largest eigenvalue of A
voff Stationary state and dominant eigenmode of A, corresponding

to quiescence
von Histogram of all neurons firing (not an eigenvector except for

γ = N)
v∗ Second dominant eigenmode of A (not a probability distribution)
γeig Connectivity strength at which λ∗ ≈ 1 yet v∗ is far from bimodal
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PME
L Pairwise maximum entropy fit of PL

DJS Jensen-Shannon divergence
D Spike-count JS divergence, DJS(PL, P1) averaged over stimuli
NE Number of excitatory neurons per layer
NI Number of inhibitory neurons per layer
Ain Mean-field transition matrix for excitatory-inhibitory networks
σχ Standard deviation of background noise
Anoisy Mean-field transition matrix for excitatory networks with back-

ground noise
vSS Nonquiescent stationary state, dominant eigenmode of Anoisy

Appendix B: Derivation of Mean-Field Markov Chain

In this appendix, we outline how to obtain a formula for the mean-field
Markov chain starting from the stochastic equations. The derivation is peda-
gogic in nature; that is, it is intended to describe in principle the assumptions
inherent in the mean-field model rather than provide a practical method of
calculation of equations 4.1 and 4.2. The transition probabilities are found
through combinatorial arguments and were originally studied in Nowotny
and Huerta (2003).

As stated in the text, the main assumption here is that neurons within a
layer are permutation symmetric. This appendix describes how to obtain the
mean-field Markov chain on spike counts (averaged over all connectivity
architectures of connectivity strength γ ) from the exact Markov chain on
spiking patterns given a particular connectivity architecture E. The first step
is to determine the probability that given true connectivity matrix EL, the
instantiated “effective” connectivity matrix is ÊL:

P(ÊL|EL) = pK(ÊL )(1 − p)K(EL−ÊL ),

where K(M) is the number of nonzero elements in matrix M. Each element
of the transition matrix in pattern space is then given by

P(xL = x|xL−1 = x̃, EL) =
∑
ÊL

P(ÊL|EL) · δ
(
x − �(ÊLx̃ − θ )

)
,

where δ denotes the Kronecker delta. In two steps, we will reduce the
dimension of the system to condense pattern space into rate space. First,
summing over x,

P(SL = m|xL−1 = x̃, EL) =
∑

x

P(xL = x|xL−1 = x̃, EL) · δ

(
m −

N∑
i=1

x(i)

)
.
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Another sum gives the (N + 1) × (N + 1) transition matrix conditioned on
the connectivity matrix EL:

P(SL = m|SL−1 = n, EL) =
∑

x̃

P(SL = m|xL−1 = x̃, SL−1, EL)

·P(xL−1 = x̃|SL−1, EL)

=
∑

x̃

P(SL = m|xL−1 = x̃, EL) · P(xL−1 = x̃|SL−1).

Finally, averaging over every possible EL for the fixed γ , we obtain the
elements of the mean field transition matrix,

Anm = P(SL = m|SL−1 = n)

=
∑
EL

P(SL = m|SL−1 = n, EL) · P(EL),

which gives the elements of the mean-field transition matrix. Through these
steps, the explicit derivation of the mean-field model (see equations 4.1 and
4.2) from the original setup is demonstrated.

Finally, we can calculate the specific values of Anm in equation 4.1 as
follows. Suppose m neurons are firing in the upstream layer. Assuming
conditional independence of neurons within a layer, the probability of pat-
tern x conditioned on the previous layer’s spike count can be written as

P(xL = x|SL−1 = n)=
N∏

i=1

qx(i)
n (1 − qn)1−x(i)

= q
∑

i x(i)
n (1 − qn)N−∑

i x(i), (B.1)

where qn represents the probability of any neuron firing given n neurons fir-
ing in the previous layer (as in equation 4.2). Then the transition probability
Anm = P(SL = m|SL−1 = n) can be computed from equation B.1 by summing
over all possible combinations of patterns x such that

∑
i x(i) = m,

P(SL = m|SL−1 = n) =
(

N
m

)
qm

n (1 − qn)N−m,

which is exactly equation 4.1.
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Figure 10: Investigating the validity of the mean-field model. (A) Average JS
divergence between the distribution after simulation through five layers and
that predicted by the mean-field model for varying C, p. The mean-field model
breaks down in the sparse limit of small C and high p. The white curve represents
γ = γeig ≈ 1.3. (B–D) Example spike count distributions from 1000 Monte Carlo
simulations (gray bars) and their mean-field predictions (black line) for three
orders of magnitude of the JS divergence. Parameters are (B) C = 3, p = 1, S = 3
for the worst fit, (C) C = 6, p = 0.5, S = 9 for the intermediate fit, and (D) C = 5,
p = 0.26, S = 11 for the best fit.

Appendix C: Validity of the Mean-Field Markov Chain Model

In this section we investigate the validity of the mean-field Markov chain
model. Specifically, for a fixed network connectivity structure, we first esti-
mate the true spike count distribution P5 in response to input rate S through
Monte Carlo simulation. We then compare this to the distribution predicted
by the mean-field Markov chain PMF

5 = PinputA
4 by computing the Jensen-

Shannon divergence between these two distributions. Finally, we average
the JS divergence (see equation 5.1) over 100 instantiations of all possible
input rates and 20 random networks for that particular C and p.

Overall, the mean-field distribution approximates the true spike count
distribution quite accurately, as shown in Figure 10A. The white curve
overlaid on the figure indicates the level set γ = γeig. Note that agreement
is perfect for fully connected networks. The only major challenge to the
accuracy of the mean-field approximation is in the limit of low C and high
p. Since C is low, there are few trials for the stochastic synapses, and the
high p additionally ensures that over repetitions of the same stimulus S,
the activity follows a nearly deterministic trajectory, resulting in P5 having
a narrower distribution than the mean-field predicts. Example histograms
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are shown in Figures 10B–10D to give an interpretation of values for the JS
divergence.

When repeated for θ = 7 (data not shown), the mean-field model even
better captured the true distributions, with a maximal JS divergence of 0.15
in the region of inaccuracy in the limit of p ≈ 1 andC ≈ γobs. As a final check,
we also compared the means of the response distributions and found that,
as expected, the averaged error was below machine epsilon (results not
shown).

Appendix D: Analytical Results for the Eigenstructure
of the Mean-Field Transition Matrix

Proposition 1. For any threshold θ ≥ 1 and connectivity 0 < γ < N, the tran-
sition matrix A possesses a unique stationary state π = voff such that π A = π .

Proof. Let π = (p0, . . . , pN). Then from direct matrix multiplication with
equation 4.1, the mth component of the vector πA is

(πA)m =
N∑

n=0

pn

(
N
m

)
qm

n (1 − qn)N−m.

The stationary state requires pm = (Ap)m for all m, that is,

pm =
N∑

n=0

pn

(
N
m

)
qm

n (1 − qn)N−m

for all m = 0, . . . , N. In particular, when m = 0, this becomes

p0 = p0 +
N∑

n=1

pn

(
N
0

)
q0

n(1 − qn)N.

The summed term on the right-hand side must be zero. However, note
that each of the components of this sum is nonnegative, so each must be
zero, that is, for each n = 1, . . . , N either pn = 0 or (1 − qn)N = 0. We could
have (1 − qn)N = 0 for a particular n if qn = 1. However, qn can never be 1
for sensible parameter values of θ > 0 and 0 < γ < N. Therefore, we must
have pn = 0 for all n = 1, . . . , N, and thus p0 = 1. The resulting stationary
state is therefore unique and precisely equal to voff.

Proposition 2. Suppose the eigenvectors of A have limits as γ → N. Then A has
an eigenvalue λ∗ → 1 as γ → N with corresponding eigenvector v∗ that converges
to a vector in the span of von and voff .
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Proof. First consider (following equation 4.2),

qn = 1 −
θ−1∑
k=0

(
n
k

) ( γ

N

)k (
1 − γ

N

)n−k

as γ → N. For n ≤ θ , qn = 0 by definition. For n > θ , the sum on the right
side of this equation approaches 0 since n > k, so qn → 1. Below we sum-
marize for various m and n the limit of qm

n (1 − qn)N−m as γ → N:

n > θ : m = 0 : q0
n(1 − qn)N → 0

0 < m < N : qm
n (1 − qn)N−m → 0

m = N : qN
n (1 − qn)0 → 1

n ≤ θ : m = 0 : q0
n(1 − qn)N → 1

0 < m < N : qm
n (1 − qn)N−m → 0

m = N : qN
n (1 − qn)0 → 0.

Now suppose λ is an eigenvalue of A with corresponding eigenvector v for
some γ . Then λ and v satisfy

N∑
n=0

vn

(
N
m

)
qm

n (1 − qn)N−m = λvm

for all m = 0, . . . , N. In particular, for m = 0, we have

θ∑
n=0

vn

(
N
0

)
q0

n(1 − qn)N +
N∑

n=θ+1

vn

(
N
0

)
q0

n(1 − qn)N = λv0,

which, taking γ → N, reduces to

θ∑
n=0

ṽn = λ̃ṽ0,

all other terms having vanished. Here, ṽ is the limit of v, which exists
by assumption, and λ̃ is the limit of λ, which exists by the continuity of
eigenvalues. For m = N, a similar expression is obtained:

N∑
n=θ+1

ṽn = λ̃ṽN.
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Finally, for 0 < m < N,

0 = λ̃ṽm

This last equation reveals two possibilities: either λ̃ = 0 or ṽm = 0 for 0 <

m < N. The latter case implies that λ = 1; thus, the second largest eigenvalue
of A converges to 1 with limiting eigenvector in the span of von and voff. All
other eigenvalues converge to 0.

Proposition 3. Suppose NE − NI > θ . Then the (four-dimensional) transition
matrix Ain has a unique (two-dimensional) stationary state π corresponding to
no inhibitory and no excitatory neurons spiking at a layer. Moreover, the second
largest eigenvalue converges to 1, and assuming the eigenvectors of Ain have
limits as γ → N = NE + NI , then its corresponding eigenvector converges to the
space spanned by the vector corresponding to all inhibitory and excitatory neurons
firing, and the vector corresponding to all inhibitory and excitatory neurons being
quiescent.

Proof. Because of the structure of Ain, this proposition follows similarly
to those of the previous two propositions.

Appendix E: Verification of Scaling Argument for the Robustness
of γ in Excitatory-Inhibitory Networks

Section 7 explains that an added inhibitory population increases the robust-
ness of optimal propagation to perturbations in γ by arguing that the net
synaptic input to each neuron is scaled by a factor of (NE − NI)/N. This
scaling argument is exact in the limit of large N (minimizing fluctuation in
synaptic inputs) and treats only perturbations near the critical γ that give
optimal rate propagation (as measured by the spike count JS divergence).
The value of this critical γ , as well as the minimal value of the spike count
JS divergence, need not be the same with and without inhibition under the
scaling argument.

To verify that this is the case numerically, we calculated the spike count
JS divergence for two networks: the purely excitatory network (E) with
NE = 200 and the excitatory-inhibitory network (EI) with NE = 200, NI =
50. We then scaled each curve horizontally by a factor of (NE − NI)/N (this
is the identity transformation in the case of the E network) and translated
the curves both vertically and horizontally to match their minimal values.
If our scaling argument is correct, these curves should overlap near the
minimal value. This is exactly what is seen in simulations (see Figure 11,
compare with the unscaled curve for the EI network).
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Figure 11: Spike count JS divergence of E networks with NE = 200 (dashed
curve) and EI networks with NE = 200, NI = 50 (solid curve) plotted against
scaled connectivity 1/N(NE − NI)γ . All curves have been translated horizon-
tally and vertically to align the minimum at the same value. Note that near the
minimum, the E network and the scaled EI network overlap. Compare with the
spike count JS divergence for EI networks plotted against unscaled γ (dotted
curve).

Appendix F: Another Metric for Rate Propagation

In addition to the measures described in the main text, we also considered
the metric for rate propagation following van Rossum et al. (2002). Define
the rate dissimilarity between the input rate S/N and the rate at the Lth
layer SL/N via

RD(γ , θ ) = ES[Etrials[(SL/N − S/N)2|S]]. (F.1)

There are two potential sources of poor performance according this quan-
tification: if the mean value of SL is far from S or if SL has large variance. As
we see in Figure 12A, when θ = 1, the rate dissimilarity reaches its minimal
value at critical connectivity γeig ≈ γobs, suggesting that for low-threshold
neurons, these networks are best able to propagate rates through the net-
work. Outside of this intermediate connectivity range, the dissimilarity
between input and output returns to high values.

When the threshold is raised, the dissimilarity curve changes shape and
no longer has a sharp minimum at γeig (see Figure 12C); instead, there
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Figure 12: Rate dissimilarity for (A, B) θ = 1, and (C, D) θ = 7. (A, C) Rate dis-
similarity plotted as a function of connectivity level γ . For (A) low-threshold net-
works, rate propagation is optimal at γobs. For (C) high-threshold networks, this
is no longer the case. (B, D) Rate dissimilarity averaged over intermediate values
(S = 6, . . . , 15, solid line) and extreme rates (S = 0, . . . , 5 and 16, . . . , 20, dashed
line). (E) Mean of spike count and (F) rate dissimilarity for high-threshold
(triangles) and low-threshold (circles) networks plotted as a function of input
stimulus. The networks shown in panels E and F are those that minimize the
stimulus-averaged rate dissimilarity, as indicated by the markers in panels A
and C.

is a robust minimum. Moreover, the minimal rate dissimilarity values for
the low- and high-threshold networks are at comparable values. This may
at first seem surprising, given that the high-threshold networks produce
strong synchrony, and this should lead to a large response variance. What
is actually happening is an effect of both the increasing nullity of A and
averaging over all stimuli. In Figure 12E, the stimulus-dependent mean of
the output at the fifth layer is plotted as a function of the stimulus for the
networks that minimize average rate dissimilarity, indicated by the markers
in Figures 12A and 12C for both θ = 1 (circles) and θ = 7 (triangles). It is
immediately clear that the low-threshold network better propagates inter-
mediate rates as compared to the high-threshold network. By calculating the
stimulus-dependent rate dissimilarity rather than taking the uniform aver-
age, we see in Figure 12F the difference between these two networks. While
high-threshold networks can propagate low and high rates better than low-
threshold networks, only the latter can propagate intermediate rates. This is
because high-threshold networks produce bimodal responses at the connec-
tivity value required to propagate rates. To make this point more apparent,
in Figures 12B and 12C, we have crudely separated the rate dissimilarity
averaged over intermediate rates (solid lines) and extreme (either high or
low) rates (dashed lines). This reveals that low-threshold networks perform
better than high-threshold networks for intermediate rates.
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Faced with the subtlety of these results, in the main text we use the spike
count JS divergence in order to unambiguously reveal network properties
that support the propagation of asynchronous input distributions.
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