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In this paper, we study the effect of two distinct discrete delays on the dynamics of a
Wilson–Cowan neural network. This activity-based model describes the dynamics of
synaptically interacting excitatory and inhibitory neuronal populations. We discuss the
interpretation of the delays in the language of neurobiology and show how they can
contribute to the generation of network rhythms. First, we focus on the use of linear
stability theory to show how to destabilize a fixed point, leading to the onset of
oscillatory behaviour. Next, we show for the choice of a Heaviside nonlinearity for the
firing rate that such emergent oscillations can be either synchronous or anti-
synchronous, depending on whether inhibition or excitation dominates the network
architecture. To probe the behaviour of smooth (sigmoidal) nonlinear firing rates, we use
a mixture of numerical bifurcation analysis and direct simulations, and uncover
parameter windows that support chaotic behaviour. Finally, we comment on the role of
delays in the generation of bursting oscillations, and discuss natural extensions of the
work in this paper.
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1. Introduction

Delays arise naturally in models of neurobiological systems. For example, the
finite speed of an action potential (AP) propagating along an axon means that
spike signalling between neurons depends upon how far apart they are. Hence,
the interest in understanding network models with space-dependent delays, as
in Laing & Coombes (2006). Upon arrival at a synaptic contact point, the
transduction of an electrical signal into a biochemical signal and back again, to a
post-synaptic potential (PSP), gives rise to a further delay. Yet another delay is
associated with the spread of the PSP through the dendritic tree of the neuron to
the cell body, where further APs can be initiated. It is now quite common to
model both these forms of signal processing using either a form of distributed
delay, as in Laing & Longtin (2003), or as a simple fixed or discrete delay. For
an excellent review of the role of time delays in neural systems, we refer the
reader to the paper by Campbell (2007). The effects of such delays can be quite
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varied. Although commonly associated with the generation of oscillations
(Plant 1981), delays can also lead to oscillator death (Reddy et al. 1998),
control phase locking (Coombes & Lord 1997) and underlie multi-stability
(Shayer & Campbell 2000).

In this paper, we focus on the dynamics of two-population neural models with
the incorporation of two discrete delays. In particular, we will work with the
well-known Wilson & Cowan (1972) model. Such activity-based models are
expected to provide a caricature of the behaviour of more realistic spiking
networks when the time scale of synaptic processing is much longer than the
membrane time constant of a typical cell (Ermentrout 1998). This is perhaps
most clearly demonstrated by recent work of Roxin et al. (2005), which further
emphasizes that a single delay in the activity-based representation can further
improve the match with spiking networks. The delay in the activity-based model
is interpreted by them as describing the time course of the AP initiation.
However, an alternative interpretation of this delay is that it is necessary to
adequately model the time lag involved in generating a rate-based representation
of a spiking network. In particular, single-neuron firing rates (for slow synapses)
will be largely determined by the steady-state values of non-spiking currents, and
thus the delay may be more naturally interpreted as the time for these currents
to relax. In any case, this paper will show how to analyse a delayed neural
network with a hybrid approach, combining linear stability theory, the
construction of periodic orbits (for piecewise constant nonlinear firing rate
functions) and numerical techniques.
2. The model

As discussed earlier, under certain approximations, spiking network models can
be reduced to just a few variables. One famous example is the Wilson & Cowan
(1972) model that describes the evolution of a network of synaptically interacting
neuronal populations (typically one being excitatory and the other inhibitory). In
the presence of delays, this model takes the form

_u ZKuC f ðqu CauðtK t1ÞCbvðtK t2ÞÞ;

1

a
_v ZKvC f ðqv CcuðtK t2ÞCdvðtK t1ÞÞ: ð2:1Þ

Here, u and v represent the synaptic activity of the two populations, with a
relative time scale for the response set by aK1. The architecture of the network is
fixed by the weights a, b, c, d, while qu,v describe background drives (biases). The
firing rate function f is commonly chosen as a sigmoid

f ðzÞZ 1

1CeKbz
; ð2:2Þ

which satisfies the (Riccati) equation f 0Zbf(1K f ), with bO0. The fixed delays
t1 and t2 distinguish between the delayed self-interactions and the delayed
cross-interactions. The delay differential equation (DDE) model (2.1) is
similar, although not equivalent, to voltage-based models, which have linear
combinations of sigmoidal functions of the different variables on the right-hand
Phil. Trans. R. Soc. A (2009)
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Figure 1. Hopf (HB, dashed line) and saddle-node (SN, solid line) bifurcation sets in the Wilson–
Cowan network (no delays) with a mixture of excitatory and inhibitory connections for aZ1,
aZKbZcZ10, dZ2 and bZ1.
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side (Marcus & Westervelt 1989; Olien & Bélair 1997; Wei & Ruan 1999;
Shayer & Campbell 2000). Restrictions of the parameter choices recover a
number of models already considered in the literature, such as that of (i) Glass
et al. (1988), when a!0, bZ0, (ii) Chen & Wu (1999), when aZ1, aZdZ0 and
bZcO0, and (iii) Battaglia et al. (2007), when aZ1, aZd!0, bZcO0 and f(z) is
a threshold-linear firing rate.

Before analysing the full DDE system, it is first useful to describe the
dynamics in the absence of delays, where we recover the basic Wilson and Cowan
model. For t1Zt2Z0, it is straightforward to find the values of qu and qv
corresponding to Hopf and saddle-node bifurcations. The point (u�, v�) is an
equilibrium if there is a solution to the pair of equations

qu Z fK1ðu�ÞKau�Kbv�; qv Z fK1ðv�ÞKcu�Kdv�; ð2:3Þ
where fK1ðzÞZbK1 lnðz=ð1KzÞÞ. The Jacobian matrix is therefore

LZ
K1Cabu�ð1Ku�Þ bbu�ð1Ku�Þ

acbv�ð1Kv�Þ a½K1Cdbv�ð1Kv�Þ�

" #
: ð2:4Þ

Thus, the conditions for a Hopf bifurcation (HB) are

Tr LZKð1CaÞCabu�ð1Ku�ÞCadbv�ð1Kv�ÞZ 0 and det LO0: ð2:5Þ

Eliminating v� as

v�GðuÞZ
1G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1K4½ð1CaÞ=bKau�ð1Ku�Þ�=ðadÞ

p
2

; ð2:6Þ

we can then plot the fixed point equation (parametrically) in the (qu, qv) plane,
as in figure 1. A similar procedure can be used to determine the locus of saddle-
node (SN) bifurcations defined by det LZ0, as well as the Bogdanov–Takens
bifurcation defined by det LZ0 and Tr LZ0 (when the SN and HB curves
Phil. Trans. R. Soc. A (2009)
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intersect). Indeed the Wilson and Cowan model also supports a saddle node on
an invariant circle bifurcation (when the SN curve lies between the two HB
curves), and can also support a saddle–separatrix loop and a double limit cycle.
See Hoppensteadt & Izhikevich (1997, ch. 2) for a detailed discussion.
3. Linear stability analysis of fixed point

The existence of an equilibrium is, of course, independent of any delays. Many
authors have described in detail how the presence of delays affects the stability of
an equilibrium, and here we follow the spirit of work by Marcus & Westervelt
(1989), Wei & Ruan (1999) and Giannakapoulos & Zapp (2001). In the presence
of delays, the linearized equations of motion have solutions of the form
ðu; vÞZð�u; �vÞelt. Demanding that the amplitudes ð�u; �vÞ be non-trivial gives a
condition on l that may be written in the form E(l)Z0, where

EðlÞZdet
lC1Kabu�ð1Ku�ÞeKlt1 Kbbu�ð1Ku�ÞeKlt2

Kcbv�ð1Kv�ÞeKlt2 l=aC1Kdbv�ð1Kv�ÞeKlt1

" #
; ð3:1Þ

and the equilibrium (u�, v�) is given by the simultaneous solution of (2.3). For
l2R, we see that lZ0 when

ð1K k1Þð1K k2ÞK k3 Z 0; ð3:2Þ

where k1Zabu�(1Ku�), k2Zdbu�(1Kv�) and k3Zbcb2u�v�(1Ku�)(1Kv�). Thus, a
real instability of a fixed point is defined by (3.2) and is independent of (t1, t2).
Referring back to the analysis of §2, we see that this is identical to the condition
for a saddle-node bifurcation. By contrast, a dynamic instability will occur
whenever lZiu for us0, where u2R. The bifurcation condition in this case is
defined by the simultaneous solution of the equations Re E(iu)Z0 and
Im E(iu)Z0, namely

0Z ð1K k1 cosðut1ÞÞð1K k2 cosðut1ÞÞKðuCk1 sinðut1ÞÞðu=aCk2 sinðut1ÞÞ
K k3 cosð2ut2Þ; ð3:3Þ

0Z ð1K k1 cosðut1ÞÞðu=aCk2 sinðut1ÞÞCðuCk1 sinðut1ÞÞð1K k2 cosðut1ÞÞ
Ck3 sinð2ut2Þ: ð3:4Þ

For the parameters that ensure us0, we shall say that the simultaneous solution
of equations (3.3) and (3.4) defines a Hopf bifurcation at ðt1; t2ÞZðtc1; tc2Þ. More
correctly, we should also ensure that as the delays pass through this critical point
that the rate of change of Re l is non-zero (transversality) and that there are no
other eigenvalues with zero real part (non-degeneracy).

Interestingly, the models with two delays can lead to an interference effect
whereby although either delay, if long enough, can bring about instability, there
is a window of (t1, t2) where the solutions are stable to Hopf bifurcations. This is
nicely discussed in the book by MacDonald (1989, ch. 6); see also the book by
Stépán (1989, ch. 3). An example of this effect, obtained by computing the locus
Phil. Trans. R. Soc. A (2009)
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Figure 2. A bifurcation diagram showing the stability of the equilibrium in the Wilson and Cowan
model with two delays. The parameters are the same as shown in figure 1 with (qu, qv)Z(K2,K4).
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of Hopf bifurcations according to the above prescription, is shown in figure 2.
A similar figure, showing a band of stability that lies between two broad regions
of instability, is found in the work of Murdoch et al. (1987).
4. Synchronous and anti-synchronous solutions

In general, despite linear stability analysis showing where to look, it is a
challenge to find periodic solutions in closed form. Moreover, determining their
stability is a problem that, in general, is best examined with numerical tools.
However, some results are known about the phase relationship between the two
populations during an oscillation. In particular, Chen et al. (2000) have shown
that for aZ1, quZqv, aZdZ0 and bZc that every non-constant solution of (2.1)
is either synchronous or phase locked. Here, we explore the explicit construction
of such solutions in the limit of high gain (b/N), so that f(z)ZH(z), where H is
the Heaviside step function. Such equations are commonly encountered in
physiological control systems (Glass et al. 1988; Longtin & Milton 1998). For
example, in figure 3, we show a coexisting synchronous and anti-synchronous
stable periodic orbit in a network with purely inhibitory connections. Previous
work on the analysis of periodic orbits in delayed neural networks with Heaviside
nonlinearity can be found in Guo et al. (2005).
(a ) Inhibitory network

We first consider a purely inhibitory network with a, b, c, d!0, with some bias
quZqv and aZ1. Regarding a synchronous T-periodic solution, u(t)Zv(t) with
u(tCT )Zu(t), like that shown in figure 3a, we parametrize such a solution in
terms of two fundamental times T1,2 and the maxima and minima AG of the
orbit. Here, T1 denotes the time spent on the decreasing part of the trajectory,
and T2 that spent on the rising phase. Exploiting the piecewise linear nature of
the dynamics, we then have that
Phil. Trans. R. Soc. A (2009)
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Figure 3. Coexisting (a) synchronous and (b) anti-synchronous solutions for f(z)ZH(z). The
parameters are aZ1, aZdZK1, bZcZK0.4, quZqvZ0.7, t1Z1 and t2Z1.4.
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AKZACe
KT1 ; ð4:1Þ

ACZ 1CðAKK1ÞeKT2 ; ð4:2Þ

qu ZKaACe
KðT1Kt1ÞKbACe

KðT1Kt2Þ; ð4:3Þ

qu ZKa 1CðAKK1ÞeKðT2Kt1Þ
h i

Kb 1CðAKK1ÞeKðT2Kt2Þ
h i

: ð4:4Þ

Solving these we obtain the period of oscillation TZT1CT2, where

T1 Z ln
sCqu CaCb

qu

� �
; T2 Z ln

quKs

qu CaCb

� �
; ð4:5Þ

and sZKðaet1Cbet2Þ. The amplitude of the oscillation is AZACKAKZ
(aCbCs)/s.

Similarly, to analyse an anti-synchronous solution, u(t)Zv(tCT/2) with
u(t)Zu(tCT ), as in figure 3b, we note that by symmetry, the rising and falling
phases have the same duration, say T1. For the parameters considered, we find
that t1!T1!t2, and we obtain the relationships

AKZACe
KT1 ; ð4:6Þ

ACZ 1CðAKK1ÞeKT1 ; ð4:7Þ

qu ZKa 1CðAKK1ÞeKðT1Kt1Þ
h i

Kb 1CðAKK1ÞeKð2T1Kt2Þ
h i

: ð4:8Þ

Solving the above we find that T1 satisfies the transcendental equation

qu ZKa 1C
et1ðeKT1 K1Þ
eT1KeKT1

� �
Kb 1C

et2eK2T1ð1KeT1Þ
eT1KeKT1

� �
: ð4:9Þ
Phil. Trans. R. Soc. A (2009)



0

0.25

0.50

0.75

1.00

42 45 48

d

d

Figure 4. A periodic solution in a single population model with excitatory self-feedback. In this
example, aZ1, bZ0, KquZhZ0.5 and t1ZtdZ2.
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The period T is 2T1 and the absolute amplitude of oscillation, AZACKAK, is
given by

AZ
ð1KeKT1Þ2

1KeK2T1
: ð4:10Þ

(b ) Excitatory self-feedback

For a single population with self-feedback, it is also possible to construct
periodic solutions (for a Heaviside firing rate). Here, we consider just the
evolution of u with aZ1, bZ0, quZKh, hO0 and t1Ztd, a fixed delay. An
example of a periodic trajectory is shown in figure 4. It is natural to parametrize
the solution in terms of the four unknowns AG and TG, which denote the largest
(AC) and smallest (AK) values of the trajectory and the times spent above (TC)
and below (TK) the threshold h. The trajectory increases from AK for a duration
TC and decreases from AC for a duration TK. The values for these four
unknowns are found by enforcing periodicity of the solution and requiring it to
cross-threshold twice, giving us four simultaneous equations:

ACZAKe
KTC C1KeKTC; ð4:11Þ

AKZACe
KTK; ð4:12Þ

ACZ heKðtdKTKÞC1KeKðtdKTKÞ; ð4:13Þ

AKZ heKðtdKTCÞ: ð4:14Þ
We solve these to find

TCZ ln
1KAK

1KAC

Z td C ln
AK

h
; TKZ ln

AC

AK

Z td C ln
1KAC

1K h
; ð4:15Þ

assuming 1Oh (so that threshold can be reached). The amplitudes AG satisfy

AKZ 1Cð1K1=hÞAC; ACZAKC ½eðTKtdÞK1�; ð4:16Þ
Phil. Trans. R. Soc. A (2009)
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Figure 5. The period and amplitude of an oscillatory solution in a single population with excitatory
self-feedback as a function of the delay td. The other parameters are the same as shown in figure 4.
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where TZTCCTK is the period of oscillation. We thus find that T satisfies the
transcendental equation

T Z 2td C ln
RKeðTKtdÞ

RK1

" #
C ln RCð1KRÞeðTKtdÞ

h i !
; ð4:17Þ

where RZ1/h. The absolute amplitude AZACKAK is given by AZ
½eðTKtdÞK1�. A plot of the period and amplitude as a function of td is shown in
figure 5. By linearizing about the periodic orbit shown in figure 4 and finding its
Floquet exponents, one can show that this orbit is actually unstable (Coombes &
Laing in press).
5. Numerical bifurcation analysis

In the high-gain limit (when f is the Heaviside), explicit solutions of (2.1) can be
constructed, as in §4. For a general firing rate function, solutions cannot
normally be explicitly constructed, but the bifurcations of fixed points can
be detected and followed in parameter space, as in §3. DDE-BIFTOOL
(Engelborghs et al. 2001, 2002) is a software package for the numerical
bifurcation analysis of systems of delay differential equations that can not only
detect the bifurcations of fixed points, but can also follow branches of stable and
unstable periodic orbits, and homoclinic and heteroclinic orbits. In this section,
we demonstrate its capabilities by analysing (2.1) as qu and t1Zt2ht are varied.
Typical results are shown in figure 6, where the curves of saddle-node and Hopf
bifurcations of fixed points are shown, along with the saddle-node bifurcations of
periodic orbits. Here, as expected from §3, varying t does not change the fixed
points, but it does affect their stability. Figure 7 shows horizontal slices through
figure 6 at tZ0.5, 0.2 and 0.09. For tZ0.5, there is a branch of stable periodic
orbits joining the Hopf bifurcations on the upper and lower branches of fixed
points. Between tZ0.5 and 0.2, a pair of saddle-node bifurcations of periodic
Phil. Trans. R. Soc. A (2009)
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Figure 6. Bifurcation diagram. Solid line, saddle-node bifurcation of fixed points; dashed line, Hopf
bifurcation; circles joined by a line, saddle-node bifurcation of periodic orbits. The parameter
values are aZ1, qvZ0.5, t1Zt2Zt, bZ60, aZK1, bZK0.4, cZK1 and dZ0.
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Figure 7. Horizontal cuts through figure 6 at (a) tZ0.5, (b) tZ0.2 and (c) tZ0.09. Solid line, stable
fixed points; dashed line, unstable fixed points; circles, stable periodic orbit; crosses, unstable
periodic orbit (the maximum of u over one oscillation is plotted). The parameter values are the
same as shown in figure 6. Note the different axis scales.
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orbits is created, resulting in the creation of a branch of unstable periodic orbits.
For tZ0.09, an unstable periodic orbit is created from the Hopf bifurcations on
the unstable middle branch of fixed points.

Brute force numerical simulation can also be used to explore small systems of
delay differential equations. For example, Battaglia et al. (2007) studied a system
very similar to ours, setting aZd!0 and bZcO0, but using a threshold linear
firing rate function: f(z)Zz if zO0, and zero otherwise. They varied both local
and long-range interaction strengths (a and b in our notation) and found various
Phil. Trans. R. Soc. A (2009)
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types of chaotic and periodic behaviour. We have performed a similar
calculation, with results shown in figure 8. For these parameter values, the
system appears to have only one fixed point, and this undergoes a Hopf
bifurcation on the curve shown. The most positive Lyapunov exponent can be
found in the same way as for a system of ordinary differential equations (ODEs),
by numerically integrating the variational equation in parallel with the
underlying system. (Note that only one initial condition was used for each
point in the parameter space, so multistability is not detected.)

Figure 9a shows a typical chaotic solution corresponding to the point (a, b)Z
(K6, 2.5) in figure 8. Figure 9b shows a quasi-periodic orbit that was obtained
using the parameter values in figure 9a, but simply decreasing b (the steepness of
the firing rate function).
Phil. Trans. R. Soc. A (2009)
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6. Discussion

The periodic and chaotic behaviours of the type seen above are of great interest
in neural systems, as are ‘bursting’ oscillations (Coombes & Bressloff 2005).
Although the origins of bursting in low-dimensional ODEs are quite well
understood, there has been very little work on bursting in delay differential
equations. Here, we briefly summarize the results of several groups. Destexhe &
Gaspard (1993) studied a system of two coupled DDEs, meant to model inter-
acting populations of excitatory and inhibitory neurons. By varying one
parameter they found bursts containing different numbers of APs. The bursting
could be understood as resulting from a homoclinic tangency to an unstable limit
cycle, and did not require the usual ‘slow–fast’ analysis (Coombes & Bressloff
2005). When the delays in their system were set to zero, the bursting could not
exist, since the system was then two-dimensional. However, the general presence
of a delay is not necessary to observe this bifurcation, as it can appear in three-
dimensional ODEs (Hirschberg & Laing 1995).

Laing & Longtin (2003) studied the effects of paired delayed excitatory and
inhibitory feedback on a single integrate-and-fire neuron, with andwithout noise. By
assuming that the feedback was slow relative to the membrane time constant, they
derived a rate model for the dynamics. With either inhibitory or paired excitatory
and inhibitory feedback, these authors found periodic and chaotic oscillations in the
firing rate of the neuron, i.e. bursting. They verified many of their results by
simulating an actual integrate-and-fire neuron with appropriate delayed feedback.

Throughout this paper we have focused on discrete delays in neural population
models without spatial extent. However, there is a large body of literature
devoted to continuum models of neural tissues, particularly with regard to
understanding the mechanisms of pattern and wave formation (see Coombes
(2005) for a review). Many of the techniques we have touched upon here may be
adapted for the treatment of such neural field equations (which are typically
written as non-local evolution equations of integral type). Indeed, work in this
direction has already been pursued by Roxin et al. (2005) in the context of
macroscopic pattern formation in the cortex, and by Golomb & Ermentrout
(1999) and Bressloff (2000) for the analysis of travelling waves in synaptic
networks of integrate-and-fire neurons. More recent work on space-dependent
delays (induced by the finite conduction speeds of APs along axons) can be found
in Atay & Hutt (2006), Laing & Coombes (2006) and Coombes et al. (2007).

In summary, delays are ubiquitous in neural systems and should therefore be
included in any realistic neural model. Here, we have briefly outlined the types of
analysis available for small systems of neuronally inspired delay differential
equations. There remains much to be discovered about the role of delays in more
realistic neural models.
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